УДК 550.461+550.47(571.54)

ГЕОХИМИЯ ПОРОВЫХ ВОД ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ ОЗЕРА КОТОКЕЛЬ (ВОСТОЧНОЕ ПРИБАЙКАЛЬЕ) И ИХ ТРАНСФОРМАЦИЯ В РАННЕМ ДИАГЕНЕЗЕ

А.Е. Мальцев¹, Г.А. Леонова¹, Л.В. Мирошниченко¹, Л.М. Кондратьева², В.А. Бобров¹, Ю. С. Восель¹, С.Б. Заякина¹, А.С. Шавекин¹, С.К. Кривоногов^{1,3}

¹Институт геологии и минералогии им. В. С. Соболева СО РАН, Новосибирск, Россия; ²Институт водных и экологических проблем ДВО РАН, Хабаровск, Россия; ³Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия

Изучен химический состав поровых вод органо-минеральных осадков оз. Котокель (Восточное Прибайкалье) и их трансформация в процессе раннего диагенеза. Рассмотрены закономерности изменения основного химического состава поровых вод (HCO_3^- , SO_4^{2-} , CI^- , Ca^{2+} , Mg^{2+} , K^+ , Na^+), распределения биогенных элементов (Si, P, NH_4^+ , NO_3^-) и микроэлементов (Fe, Mn, Sr, Ba, Pb, As, Co, Ni). Установлено увеличение в поровых водах концентраций HCO_3^- , NH_4^+ , PO_4^{3-} и Si, что является следствием деструкции органического вещества. В процессе бактериальной сульфатредукции в поровых водах по глубине разреза уменьшается концентрация SO_4^{2-} , возрастает S(II) и фрамбоидального пирита в осадке.

Ключевые слова: поровые воды, геохимия, диагенез, органическое вещество, микроэлементы.

GEOCHEMISTRY OF POROUS WATER OF ORGANIC-MINERAL DEPOSITS OF LAKE KOTOKEL (EASTERN PRIBAIKALYE) AND THEIR TRANSFORMATION IN EARLY DIAGENESIS

A.E. Maltsev¹, G.A. Leonova¹, L.V. Miroshnichenko¹, L.M. Kondratieva², V.A. Bobrov¹, Iu. S. Vosel¹, S.B. Zaiakina¹, A.S. Shavekin¹, S.K. Krivonogov^{1,3}

¹V.S.Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia; ²Institute for Water and Environmental Problems, FEB RAS, Khabarovsk, Russia; ³ Novosibirsk National Research State University, Novosibirsk, Russia

The chemical composition of the pore waters of organic-mineral sediments of Lake Kotokel (Eastern Baikal) and their transformation in the early diagenesis has been studied. Regularities of changes in the basic chemical composition of pore waters (HCO_3^- , SO_4^{2-} , CI^- , Ca^{2+} , Mg^{2+} , K^+ , Na^+), the distribution of biogenic elements (silicon, phosphorus, ammonium and nitrate-ion) and trace elements are considered (Fe, Mn, Sr, Ba, Pb, As, Co, Ni). An increase in pore water concentrations has been established HCO_3^- , NH_4^+ , PO_4^{3-} μ Si, which is a consequence of the organic matter destruction. In the process of bacterial sulfate reduction in the pore waters, the concentration of SO_4^{2-} decreases along the depth of the section and there is an increase in S (II) and framboidal pyrite in the sediment.

Keywords: pore water, geochemistry, diagenesis, organic matter, trace elements.

DOI 10.20403/2078-0575-2019-1-71-85

Донные отложения малых озер – это сложная система, состоящая из минеральной и органической частей, пронизанных поровыми водами. Взаимодействие поровых вод с органо-минеральным веществом осадка играет важную роль в миграции элементов и трансформации вещества донных отложений. По химическому составу поровых вод можно судить о самых разнообразных процессах, протекающих в осадках (о перераспределении элементов по глубине отложений, подвижности элементов в системе вода – осадок, аутигенном минералообразовании).

Химический состав поровых вод осадка существенно отличается от состава поверхностной воды и определяется совокупностью биогеохимических процессов: деструкцией органического вещества, растворением первичных (захороненных) карбонатов, катионным обменом, сульфатредукцией [2, 6, 8, 21, 27, 30]. Процессы раннего диагенеза приводят к трансформации поровых вод: с глубиной увеличивается минерализация и меняется соотношение между катионами и анионами [15, 30]. Если химический состав поровых вод морей и океанов изучен достаточно хорошо [4, 5, 11, 18, 20, 24–26, 30], то поровые воды донных отложений озер – недостаточно, за исключением глубоководного оз. Байкал [2, 10, 15, 21] и некоторых малых озер юго-запада Архангельской области [29]. Для малых озер Сибирского региона публикаций по химическому составу поровых вод крайне мало [13], что послужило поводом начать эти исследования как составной части работ по раннему диагенезу осадков малых озер.

Цель работы заключается в изучении геохимии поровых вод донных отложений малых озер и их трансформации в раннем диагенезе. В качестве объекта исследования выбран голоценовый разрез (верхние 4 м) донных отложений оз. Котокель (Восточное Прибайкалье). В работе представлены результаты экспедиционных и лабораторных исследований за период 2012–2017 гг. Детально рассмотрены химический состав поровых и поверхностных вод озера, вещественный состав донных отложений

и перераспределение элементов в системе вода – осадок.

Материал и методы исследования

Оз. Котокель занимает большую часть Котокельской впадины, расположенной на юго-восточном побережье Среднего Байкала в 2 км от него (рис. 1). Озеро располагается на сниженной тектонической ступени, заполненной песчаными отложениями, имеет превышение над оз. Байкал немногим более 2 м. Длина его 15 км, средняя ширина 4,6 км, средняя глубина 4,0–4,5 м (максимальная 14 м), площадь акватории 70 км², площадь водосбора 183 км², мощность озерных отложений до 20 м. Оз. Котокель является слабопроточным водоемом с замедленным водообменом, по низкому показателю удельного водосбора (2,6) относится к аккумулятивным водоемам [22].

В сентябре 2012 г. в центральной части оз. Котокель (52°79'50″ с. ш., 108°13'39″ в. д.) с понтонной установки пробурена скважина глубиной 14,5 м. Бурение озерных отложений проводили стандартными методами, но с помощью самостоятельно созданного в ИГМ СО РАН бурового оборудования. Бурильная установка состоит из надувного понтона водоизмещением около 5 т, вышки с грузоподъемными механизмами, бура с набором штанг общей длиной 30 м. Вибрационная технология бурения позволила получить непрерывный керн озерных отложений с ненарушенной структурой длиной 14,5 м.

Отбор проб озерной воды для общего химического анализа проводили с глубин 0,5 и 3 м согласно [28]. В отобранных пробах воды на месте выполнены измерения pH, Eh, растворенного кислорода, температуры при помощи pH-анализатора «Анион 4151».

Поровые воды отжимали на месте из 10-сантиметровых слоев керна по стандартной методике [30] и измеряли значения pH. Значения окислительно-восстановительного потенциала (Eh) замеряли непосредственно в керне по [8]. Концентрации анионов, катионов и микроэлементов определяли в лаборатории через пять дней после отбора проб (отбор – 21 сентября, анализ – 26 сентября 2012 г.).

Химический анализ (определение содержания анионов HCO₃⁻, Cl⁻, SO₄²⁻, NO₃⁻, NO₂⁻, PO₄³⁻) в озерных и поровых водах проводили комплексом общепринятых методов [14, 16, 17] в лаборатории контроля качества природных и сточных вод ФГУ «Верхне-Обърегионводхоз». Концентрации катионов (К⁺, Na⁺, Ca²⁺, Mg²⁺) в озерных и поровых водах определяли методом атомно-абсорбционной спектрометрии (AAC) в аналитической лаборатории Института неорганической химии им. А. В. Николаева СО РАН согласно методическим указаниям [9].

Валовые концентрации металлов (Hg, Pb, Cd, Cu, Zn, Ni, Cr, Co, Fe, As) в твердом веществе и водных пробах определяли методом ААС [9] в аналитическом центре Института геологии и минералогии

Рис. 1. Карта-схема расположения оз. Котокель

СО РАН (аналитики В. Н. Ильина, Н. В. Андросова). Определение Hg проведено методом холодного пара с амальгамацией на золотом сорбенте (аналитик к. х. н. Ж. О. Бадмаева).

Метод атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ИСП-АЭС) использовали для определения в воде и донных отложениях концентраций Al, B, Ba, Ca, Mg, Sr, P, Na, K, Li, Mo, Sb, Ti в АЦ ИГМ СО РАН (аналитик C. Ф. Нечепуренко).

Масс-спектрометрический метод с индуктивно связанной плазмой (ИСП-МС) применяли для определения концентраций редкоземельных (РЗЭ) и высокозарядных элементов (Zr, Nb, Hf, Ta) в ИГМ СО РАН (аналитики И. В. Николаева, С. В. Палесский).

Определение органического углерода (С_{орг}) в осадках проведено по методике И. В. Тюрина [7] в Институте почвоведения и агрохимии СО РАН (аналитик Л. Д. Черепахина).

Микробиологические исследования (определение численности и послойное распределение в кернах сульфатредуцирующих и денитрифицирующих бактерий) проведены в Институте водных и экологических проблем ДВО РАН под руководством д. б. н. Л. М. Кондратьевой.

Определение основных породообразующих оксидов выполнено рентгенофлуоресцентным методом в ИГМ СО РАН (аналитик Н. Г. Карманова); минеральный состав осадка – рентгеноструктурным методом там же (аналитик Л. В. Мирошниченко).

Определение форм нахождения химических элементов в донных отложениях проведено согласно методике селективного растворения [33] в АЦ ИГМ СО РАН (аналитики И. В. Макарова, Л. Д. Иванова).

Изучение микроморфологии и вещественного состава образцов донных отложений осуществлено с применением сканирующего электронного микроскопа TESCAN MIRA 3 LMU в ИГМ СО РАН.

№ 1(37) ◆ 2019 —

Рассчитаны коэффициенты корреляции для пар ионов и микроэлементов в придонной и поровой воде.

Вычислены коэффициенты водной миграции элементов [23]:

$$K_x = m_x \cdot 100 / an_x$$

где m_x – содержание элемента x в воде, мг/л; а – минерализация, мг/л; n_x – содержание элемента x в породе (в донном осадке), вес. %.

Увеличение K_x свидетельствует о возрастании интенсивности выноса элемента из зоны выветривания. Для оценки интенсивности водной миграции используются четыре градации коэффициента водной миграции [23]: 1) очень сильная (K_x от n·10 до n·100); 2) сильная (от n до n·10); 3) средняя (от 0,1n до n); 4) слабая и очень слабая ($K_x < 0,01n$).

Коэффициенты концентрации (К_с) элементов в поровых водах рассчитаны как отношение максимальной для керна концентрации элемента в поровой воде к его концентрации в придонной воде по формуле [10]

$$K_c = C_i / C_i$$

где С_i – содержание изучаемого химического элемента в поровой воде, мг/л; С – содержание химического элемента в придонной воде, мг/л.

Результаты исследования

Геохимическая характеристика осадка. Физико-химические и химические процессы, происходящие в поровых водах (ПВ), во многом определяются составом и свойствами вмещающих донных отложений (ДО), поэтому химический состав ПВ нельзя рассматривать в отрыве от геохимии ДО. Нами детально исследованы верхние 4 м осадка оз. Котокель, которые, согласно [22], сформировались в голоцене около 6 тыс. лет назад. Это однородные, темно-оливковые, тонкоструктурные, коллоидальные отложения, состоящие из мелкодисперсного ОВ и минеральных примесей. Донные отложения оз. Котокель представляют собой осадки с высоким содержанием ОВ (сапропель): концентрация Соог по глубине разреза 25-30 %, а зольность – в среднем 38 % (табл. 1). В оз. Котокель ДО характеризуются

Химический	состав	лонных	отложений	03	Котокель
VIIIIII CCKIIII	COCIAD	допных	опложении	05.	NOTOKCIL

восстановительной обстановкой (значения Eh изменяются по глубине разреза от –76 до –167 мВ), только в верхнем интервале осадка (0–10 см) установлены слабо окислительные условия среды со значениями Eh +10 мВ.

Основным породообразующим оксидом в осадке оз. Котокель является SiO₂, его среднее содержание 24,7 % (см. табл. 1). Высокие концентрации Si в осадке, помимо терригенной компоненты, обусловлены также наличием большого количества створок диатомовых водорослей в материале ДО [3, 12]. Средние содержания AI в ДО оз. Котокель составляют 4,2 %, Fe – 4,4 % (отмечено повышение концентраций Fe в верхних интервалах до 6,5 %), а Са довольно низкие – 1,1 % (чуть меньше кларка).

Фитопланктон был основным источником автохтонного органического вещества на протяжении всего периода формирования донных отложений оз. Котокель. Синезеленые водоросли создают основу органической массы сапропеля, а диатомовые поставляют биогенный кремнезем в минеральную часть осадка [3]. В составе сапропеля оз. Котокель валового кремния содержится в среднем 11 % по разрезу, почти половина приходится на биогенный Si створок диатомовых водорослей [12].

Главные породообразующие минералы осадка оз. Котокель – это слюда (разупорядоченная), кварц, плагиоклаз, хлорит; второстепенные - пирит и амфибол; акцессорные – калиевые полевые шпаты, гипс и иллит (рис. 2). Пирит встречается по всему разрезу, особенно много его в средних интервалах осадка (40-160 см). С глубины 440 см пирит исчезает в дифракционных спектрах донных отложений и появляется вновь только в интервале 590-600 см. На глубине 40 см обнаружены незначительные скопления родохрозита, который характерен для восстановленных слоев донных отложений большинства озер [32]. Высокое содержание в осадке ОВ и биогенного (аморфного) кремнезема из створок диатомовых водорослей хорошо отражается в дифракционных спектрах широким гало в областях 2–5 и 15–35 20 Cu K_a.

Таблица 1

Глубина, см	Зольность	C _{opr}	S	SiO ₂	AI_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K ₂ O
0–4	35,3	25,4	0,9	20,3	4,31	6,51	0,057	0,69	0,86	0,55	0,59
44–55	42,8	25,5	1,3	26,5	5,56	6,00	0,051	0,77	0,91	0,72	0,70
88–99	40,5	27,6	1,1	23,9	5,30	5,85	0,050	0,78	1,07	0,70	0,70
143–154	40,2	27,5	1,2	26,7	3,89	4,34	0,049	0,64	1,12	0,46	0,53
200–210	40,6	27,4	1,6	27,0	4,24	4,48	0,039	0,62	1,08	0,55	0,56
230-240	41,8	26,0	1,5	29,3	4,24	3,67	0,057	0,70	1,50	0,59	0,57
270-280	32,6	30,0	1,4	21,0	3,61	3,05	0,042	0,56	1,25	0,49	0,49
300-310	35,7	29,9	1,1	24,5	3,39	3,52	0,035	0,51	0,99	0,43	0,43
340-350	36,2	29,7	1,0	24,0	3,62	3,22	0,040	0,60	1,33	0,50	0,47
380–390	36,2	31,0	1,1	24,1	3,89	3,01	0,038	0,61	1,20	0,53	0,49

Примечание. Данные приведены на абс. сухое вещество, %. Зольность определена при 450 °С.

Геология и минерально-сырьевые ресурсы Сибири – 2019, № 1 – Geology and mineral resources of Siberia

Š

Рис. 2. Рентгеновские дифракционные спектры разных интервалов донных отложений оз. Котокель: а – 40 см, б – 230 см, в – 440 см (минералы: Амф – амфибол, Кв – кварц, КПШ – калиевый полевой шпат, Пг – плагиоклаз, Пир – пирит, Рам – рамзделит (γ–MnO₂), Род – родохрозит, Сл – слюда (разупорядоченная), Хл – хлорит)

Рис. 3. Микрофотографии осадка (а–в) и озерной взвеси (г) оз. Котокель в различных интервалах: а – 33–44 см, б – 220–230 см, в – 40 см (фото к. г.-м. н. Е. В. Лазаревой); г – озерная взвесь, 0 см (фото к. г.-м. н. А. А. Богуш) (Ди – диатомовые водоросли, Цт – циста водоросли (с кристаллом пирита внутри), Пир – пирит; спектры: 1 – сульфиды железа (гидротроилит–?) с включениями Р, Са, Мп (Са-родохрозит–?), 2 – твердый раствор сидерита и Са-родохрозита

№ 1(37) ◆ 2019

По данным сканирующей электронной микроскопии (СЭМ) пирит представлен скоплениями микрокристаллов разной морфологии и размерности (1–10 мкм) и фрамбоидами (≈20 мкм), которые сложены микрокристаллами пирита размерностью, не более примерно 1 мкм (рис. 3, а, б). Кристаллы пирита либо представлены одиночными формами, либо образуют скопления, в которых насчитывается от 2 до 10 и более кристаллов. Большая часть кристаллов представлена октаэдрами размером около 2-3 мкм, возможно и 5-7 мкм. Очень часто все морфологические типы пирита (отдельные кристаллы и фрамбоиды) приурочены к сохранившимся в осадках растительным остаткам или рассеяны в органическом матриксе. О биогенном происхождении фрамбоидального пирита можно говорить достаточно уверенно: образование фрамбоидальных структур связано с бактериальной переработкой и последующей минерализацией ОВ [6, 8]. Установлено, что с ростом численности сульфатредуцирующих бактерий в осадке возрастают содержания пирита, количество и размер фрамбоидов.

	Таблица 2
Основные гидрохимические показатели	

поверхностных и	і придонных	(3 м)	вод оз.	Котокель

Показатель	Поверхностная вода	Придонная вода
Температура, °С	16,9	16,8
Прозрачность, см	60	Нет данных
рН	6,91	6,61
Eh, мВ	+312	+320
Щелочность, мг-экв/л	0,8	0,9
О _{2 раств} , мг/л	9,99	8,93
ХПК, мг О₂/л	14,5	22,8
БПК ₅ , мг О ₂ /л	2,30	2,55
С _{орг} , мг/л	5,4	8,6
HCO₃ ⁻ , мг/л	48,8	54,9
SO ₄ ^{2–} , мг/л	4,2	3,7
СІ⁻, мг/л	11,48	8,74
NO ₃ ⁻ , мг/л	1,98	0,58
NO ₂ ⁻ , мг/л	0,046	0,095
РО ₄ ^{3–} , мг/л	0,031	0,102
Са²+, мг/л	8,8	8,0
Mg²+, мг/л	3,4	6,3
Na⁺, мг/л	6,5	6,4
К⁺, мг/л	0,96	0,90
NH₄⁺, мг/л	0,25	0,21
Сумма ионов. мг/л	86.0	89.9

Примечание. БПК₅ (биохимическое потребление кислорода) – показатель, характеризующий содержание легкоокисляемых органических веществ по количеству израсходованного на их окисление кислорода в течение 5 сут; ХПК (химическое потребление кислорода) – показатель, характеризующий суммарное содержание в воде трудноокисляемых органических веществ по количеству израсходованного на окисление химически связанного кислорода.

Однако содержание сульфидов Fe (по результатам пересчета на восстановленную серу) в ДО невелико: в среднем 1,03 вес. %, при допущении, что вся S(II) связана в сульфидах железа.

Во взвеси фитопланктона и в верхних горизонтах осадка (0–40 см) обнаружены микронные частицы Мп в виде твердого раствора сидерита и Са-родохрозита размерностью 5–10 мкм (см. рис. 3, в, г). В материале ДО отмечено большое количество остатков диатомовых водорослей и цист золотистых водорослей. Некоторые цисты содержат включения пирита в виде крупных (около 8 мкм) кристаллов (см. рис. 3, а).

š

1(37) 2019

Химический состав поверхностных и придонных вод. Поверхностные воды оз. Котокель по преобладающим ионам в соответствии с [1] относятся к гидрокарбонатному классу группы кальция (табл. 2), по окислительно-восстановительным условиям – к типу окисленных кислородных (Eh = +0,312 B, растворенный $O_2 - 9,9$ мг/л), по щелочно-кислотным условиям – к классу нейтральных (pH = 6,9), по общей минерализации (86 мг/л) – к семейству ультрапресных вод по [23]. Значения ХПК (14,5–22,8 мг $O_2/л$) превосходят таковые БПК₅ (2,3– 2,6 мг $O_2/л$), что свидетельствует о поступлении аллохтонного (терригенного) органического вещества (помимо автохтонного) в озеро.

Макро- и микроэлементы являются важнейшим компонентом гидрогеохимического своеобразия лимногеосистем. Озеру Котокель присущи следующие элементно-геохимические особенности (табл. 3): установлены высокие содержания Al (274 мкг/л), Fe (808 мкг/л) и P (146 мкг/л) в поверхностной воде.

Низкие концентрациями Si в поверхностных водах озера (594 мкг/л) можно объяснить тем, что в нейтральных условиях среды (pH 6,9) кремний имеет малую подвижность. Не исключено также, что это является результатом потребления растворенного коллоидного кремния диатомовыми водорослями, которые поглощают Si для постройки своих створок. В момент отбора водных проб в озере активно развивалась диатомовая водоросль Aulacoseira granulata, ее доля в пробе составила 26 %.

Ионный состав поровых вод (макрокомпоненты). Поровые воды исследованного 4-метрового разреза ДО оз. Котокель относятся к гидрокарбонатно-кальциевому классу по [1] (рис. 4). Наблюдается рост минерализации ПВ с глубиной, а также снижение значений рН в верхних интервалах осадка и их увеличение вниз по разрезу.

Концентрация HCO₃⁻ в поровых водах верхнего интервала осадка в 2 раза выше (119,7 мг/л) по сравнению с озерной водой (48,8 мг/л) и увеличивается с глубиной (380–400 см) до 272,0 мг/л. Гидрокарбонат-ион – главный анион поровых вод (в среднем по разрезу 94,4 % от суммы анионов).

Распределение SO₄²⁻ в поровых водах осадка выдержано для верхних горизонтов, а содержание

— Литология, петрография, минералогия, геохимия

Таблица 3
Элементный состав поверхностных и придонных (3 м)

вод оз. Котокель, мкг/л				
Элемент	Поверхностная вода	Придонная вода		
Al	273,6	226,2		
Si	593,8	143,8		
Р	146,3	196,1		
Ti	13,7	6,1		
V	1,1	1,2		
Cr	9,7	6,9		
Mn	130	135,6		
Fe	808	648		
Со	0,10	0,10		
Ni	<3	8,7		
Cu	3,7	9,0		
Zn	44,9	42,5		
Ga	0,64	0,91		
As	<0,20	0,27		
Rb	0,37	0,74		
Sr	68,8	66,8		
Y	0,10	<0,1		
Zr	0,94	<0,9		
Мо	0,93	1,14		
Sb	<0,1	0,4		
Ва	21,3	23,8		
La	0,20	0,10		
Ce	0,30	0,20		
Pr	0,10	<0,1		
Nd	0,20	0,20		
Pt	0,10	<0,1		
Au	<0,1	<0,1		
Hg	<0,002	<0,002		
Pb	2,9	6,8		
U	0,09	0,09		

сульфат-иона сопоставимо (3,5–3,7 мг/л) с таковым в придонной воде (3,7 мг/л). Ниже по разрезу (с глубины 115 см) наблюдается резкое (на порядок) снижение концентраций сульфат-иона до 0,9–0,2 мг/л (300–400 см). Установлено увеличение отношения HCO₃^{-/} SO₄²⁻ в ПВ осадка с глубиной, а также увеличение восстановленных форм серы S(II) в твердой фазе осадка по глубине разреза.

В распределении биогенных элементов, представленных ионами NH_4^+ , NO_3^- и PO_4^{3-} (которые являются продуктами минерализации OB), установлено повышение их концентраций уже в самых верхних интервалах осадка в сравнении с придонной водой. Однако отмечена тенденция уменьшения концентраций NO_3^- вниз по разрезу, и, напротив, повышение концентраций NH_4^+ . Установлен резкий рост содержаний C_{opr} в ПВ верхних интервалов осадка сравнительно с придонной водой, а затем их плавное уменьшение вниз по разрезу ДО.

Наблюдается увеличение концентрации ионов кальция по глубине разреза в сравнении с придонны-

ми водами – от 11,3 (15 см) до 19,0 мг/л (400 см). Са²⁺ является основным катионом поровых вод (в среднем 50 % от суммы всех катионов). При абсолютном увеличении значений содержаний ионов HCO_3^- и Ca²⁺, наблюдается и увеличение отношения $HCO_3^-/$ Ca²⁺, которое возрастает в среднем почти в 2 раза (13) в сравнении с придонной водой озера (7).

Концентрации ионов Mg²⁺, Na⁺, K⁺ и Cl[−] в поровой воде практически не изменяются по глубине разрезов ДО, однако отмечается незначительные увеличение их средних значений (за исключением Na⁺) с 0,2 до 1,5 мг/л в поровых водах по сравнению с придонной водой.

Элементный состав поровых вод (микрокомпоненты). Микроэлементный состав поровых вод сравнительно с донными отложениями оз. Котокель представлен на рис. 5. Характер распределения Al, Co, Ni и As в поровых водах в целом совпадает с таковыми в осадках. Наблюдается различие в поведении Fe в твердой фазе и ПВ верхних горизонтов (0–20 см): валовые концентрации Fe в ДО растут на фоне резкого их снижения в ПВ. Наоборот, отмечается сильное увеличение содержаний Pb и Mn в ПВ верхних интервалах осадка. Установлен рост концентраций Sr в ПВ с глубиной разреза, что совпадает с увеличением по разрезу ионов Ca²⁺.

Данные по распределению Si в ПВ оз. Котокель показывают, что его концентрации в ПВ на порядок выше, чем в придонной воде (см. рис. 5). В целом, распределение Si в них совпадает с распределением валовых значений кремния в осадке. Отмечено повышение концентраций бария (до 78 мкг/л) в ПВ верхних интервалов осадка (0–40 см). Глубже по разрезу содержания Ba²⁺ падают почти в 2 раза и в среднем составляют 43 мкг/л (см. рис. 5).

Обсуждение результатов

Трансформация химического состава поровых вод в диагенезе. Основной показатель изменения физико-химических свойств поровых вод оз. Котокель – снижение окислительно-восстановительного потенциала по разрезу ДО. Снижение показателя Eh до отрицательных значений является, в первую очередь, следствием деструкции OB, бактериального потребления кислорода и образования H₂S [6, 8, 26].

Снижение значений pH в верхних интервалах осадка, по-видимому, также является следствием деструкции OB: при разложении OB в аэробных условиях (Eh>0) выделяются большие массы CO₂ и органические кислоты, что ведет к понижению значений pH. Стоит отметить, что снижение значений pH наблюдается уже в водной толще озера: в поверхностных водах оно составляет 6,9, а в придонных – 6,6 (с глубиной уменьшается и количество растворенного кислорода). По-видимому, это результат распада в аэробных условиях поступающих на дно больших масс автохтонного OB, которое представлено преимущественно фитопланктоном и синезеле-

Рис. 4. Ионный состав придонных (П) и поровых вод (мг/л), распределение значений pH, Eh (мВ) и суммы ионов (Σ_и) в оз. Котокель. Распределение S (II) в твердой фазе осадка (мас. доля, %)

ными водорослями. Повышение значений pH в донных отложениях в интервале (50–200 см) с 5,9 до 6,7, возможно, связано с ростом содержания гидрокарбонатов (карбонатная щелочность) с глубиной, а также с процессами бактериальной сульфатредукции в ДО озера. Повышение pH можно также соотнести с ростом концентраций NH₄⁺ в ПВ по разрезу осадка. Известно, что аммиак, выделяющийся при распаде белков, — сильный агент подщелачивания среды [26, 31].

Одним из факторов повышения концентраций гидрокарбонат-иона вглубь по разрезу осадка яв-

Рис. 5. Распределение химических элементов в придонных водах (П), поровых водах (1) и донных отложениях (2) оз. Котокель

ляется распад захороненного ОВ. Деструкция ОВ в аэробных условиях (первые сантиметры осадка) дает массу углекислого газа, который приводит к образованию HCO₃⁻ (H₂O + CO₂ → HCO₃⁻ + H⁺) и понижению значений рН. Ниже по разрезу в анаэробных условиях увеличение содержания HCO₃⁻ и, как следствие, метаморфизация поровых вод в диагенезе идут при непосредственном участии сульфатредуцирующих микроорганизмов (вследствие сульфатредукции). Известна хорошо выраженная зависимость возрастания щелочного резерва ПВ от интенсивности уменьшения сульфата, расходуемого при восстановлении ОВ в анаэробных условиях [8, 19]:

$$(CH_2O)_{106}(NH_3)_{16}H_3PO_4 + 53SO_4^{-2} \rightarrow 106HCO_3^{-} + 53H_2S + 16NH_4^{+} + H_3PO_4.$$

Таким образом, степень деструкции ОВ в толще осадков возрастает, что приводит к последовательному увеличению с глубиной концентраций гидрокарбонатов в поровых водах оз. Котокель. В анаэробных условиях для окисления ОВ используется кислород сульфатов, которые восстанавливаются до H₂S в процессе бактериальной сульфатредукции. Об этом свидетельствуют кривые распределения SO₄²⁻ и S(II): с глубиной уменьшается количество сульфатов и растет содержание восстановленных форм серы. Это подтверждает кривая распределения C_{орг} в ПВ вниз по разрезу: уменьшение концентрации

Соог вглубь осадка (см. рис. 5). Сульфатредукция приводит к значительному увеличению щелочности, так как вследствие данного процесса, во-первых, уменьшается содержание SO₄²⁻ – аниона сильной кислоты (H₂SO₄), во-вторых, происходит рост иона НСО₃[−], который является продуктом минерализации ОВ в анаэробных условиях [5, 19]. Поэтому между распределением ионов HCO₃⁻ и SO₄²⁻ в ПВ оз. Котокель наблюдается значительная обратная корреляция (r = -0,93) (табл. 4).

Таблица 4 Коэффициенты корреляции пар ионов и микроэлементов в поровых водах осадка оз. Котокель (гл. 0-400 см)

· · · · · · · · · · · · · · · · · · ·	
Пары ионов	Корреляция
Ca–SO ₄	-0,85
Ca–HCO ₃	0,92
Mg–HCO ₃	0,52
NH ₄ -NO ₃	-0,93
HCO ₃ –SO ₄	-0,93
SO ₄ -C _{opr}	0,86
Ca–Sr	0,70
Са—Ва	-0,79
Ca–Mn	-0,84

Выдержанные концентрации сульфат-иона в поровых водах верхних, сильно обводненных (влажность до 97 %) интервалах осадка могут быть объяснены низкими скоростями процесса сульфатредукции (вероятно, из-за частичного проникновения О₂ в верхний слой осадка), а также постоянным поступлением SO₄²⁻ из придонной воды (близкие концентрации SO₄²⁻ в придонных и в поровых водах верхних горизонтов). Ниже по разрезу наблюдается резкое (почти на порядок) уменьшение содержания сульфат-иона и Соог в ПВ на фоне роста S(II) в твердой фазе осадка (см. рис. 4), численности сульфатредуцирующих бактерий (с 2,7 до 57,7·10⁴ КОЕ/г) и появление большого количества крупных фрамбоидов пирита по данным СЭМ (см. рис. 3, а, б). Уменьшение содержания SO₄²⁻ в поровых водах вниз по разрезу (восстановление SO₄²⁻ до H₂S при участии сульфатредуцирующих бактерий) и рост восстановленных форм серы косвенно подтверждают «усиление» процессов бактериальной сульфатредукции.

Особенности распределения кривой NO₃⁻ (увеличение концентраций в верхних интервалах и уменьшение в нижних) в ПВ может быть также отражением деятельности микроорганизмов. Увеличение нитрат-иона в ПВ верхних интервалов может быть следствием окисления аммиака при участии бактерий-нитрификаторов. Этот процесс предполагает присутствие в ДО свободного кислорода и нитрифицирующих микроорганизмов в активном состоянии [8]. Снижение концентрации NO₃⁻ в ПВ вниз по разрезу до 0,1 мг/л (что в 5 раз меньше, чем в придонной воде), скорее всего, является следствием деятельности денитрифицирующих бактерий (ДНБ), численность которых резко возрастает с глубиной разреза (с 23,3 до 282,0·10⁵ КОЕ/г). Эти бактерии восстанавливают нитраты до молекулярного азота и являются факультативными анаэробами (окисляют ОВ за счет кислорода воздуха), но, попадая в анаэробные условия, они используют кислород нитратов как акцептор электрона. Минерализация ОВ в анаэробных условиях приводит к росту концентраций NH₄⁺ вниз по разрезу ДО, а диссимиляторная нитратредукция до аммония (ДНРА) может сохранять в ПВ образующийся в диагенезе NH₄⁺ на высоком уровне (несмотря на анаэробное окисление аммония), преобладая над процессом денитрификации в условиях повышенного содержания ОВ и интенсивной сульфатредукции.

Увеличение концентраций кремния в поровых водах осадка, по-видимому, связано с растворением створок диатомовых водорослей. Известно [27], что аморфный характер кремнезема в диатомите заметно отличает его от обычного кремнезема: он значительно легче и полнее растворяется в щелочах, поэтому при захоронении в осадках может легко растворяться и переотлагаться по глубине разрезов отложений. Увеличение коэффициента водной миграции Si в ПВ на порядок (табл. 5) в сравнении с придонной водой, а также самые высокие (48,7) значения коэффициента концентрации (табл. 6) среди всех элементов подтверждают предположение о выщелачивании Si из твердой фазы осадка в ПВ вследствие растворения створок диатомовых водорослей.

Таблица 5

Коэффициент водной миграции (К _x)
химических элементов в ПД и ПВ оз. Котокель

Элемент	пд	ПВ (0—400 см)
Ca	16,8	25,5
Mg	21,5	10,1
Na	15,8	5,7
К	1,9	0,9
Al	0,1	0,1
Fe	0,2	0,1
Mn	2	32,2
Ва	7,8	8
Si	0,001	0,019
Si	7,8 0,001	8 0,019

Можно заключить, что увеличение концентраций HCO₃⁻, NO₃⁻, NH₄⁺, PO₄³⁻ в ПВ верхних интервалов осадка в сравнении с придонной водой является следствием деструкции органического вещества, в результате которой в поровые воды осадка переходят наиболее подвижные и лабильные компоненты OB. Концентрации HCO₃⁻, NH₄⁺, PO₄³⁻, NO₃⁻ и Si в поровой воде уже верхнего слоя ДО во много раз превышают их содержания в придонной воде, а с углублением в толщу осадков концентрации HCO₃⁻ и NH₄⁺ в ПВ значительно возрастают. Это сви№ 1(37) ♦ 2019

Коэффициенты концентрации (К_с) поровых вод оз. Котокель

Таблица 6

Элемент	K _c
Ca ²⁺	2,4
Mg ²⁺	1,6
Na⁺	1,2
K+	1,7
HCO₃ [−]	5,0
Cl⁻	1,4
SO ₄ ²⁻	1,0
NO ₃ ⁻	4,2
PO ₄ ³⁻	2,9
NH⁺	13,8
Al	2,1
Fe	5,4
Mn	27,3
Si	48,7
Sr	2,7
Ва	3,3
Pb	2,4
As	8,9

детельствует о продолжающейся минерализации ОВ вглубь толщи ДО и активной деструкции азотсодержащих органических веществ, относящихся к легко метаболизируемым соединениям, что сопровождается «потерей» N, который поступает в жидкую фазу осадка. В процессе денитрификации (завершающий процесс деструкции ОВ) наблюдается восстановление денитрифицирующими бактериями нитратов и нитритов до газообразного азота. Это подтверждается уменьшением вниз по разрезу NO₃⁻. А высвобождение из органического вещества аммонийного азота (в процессе аммонификации) при анаэробной деструкции ОВ сопровождается ростом с глубиной концентраций NH₄⁺ в ПВ и более высокими значениями коэффициента концентрации NH_4^+ в сравнении с NO_3^- (см. табл. 6).

Рост минерализации поровых вод с глубиной определяется, прежде всего, увеличением концентраций в них по глубине разреза ионных пар Ca²⁺ и HCO₃⁻, что подтверждается высокими (r = 0,92) значениями коэффициентов корреляции для этих ионов (см. табл. 4).

Повышение концентраций ионов кальция вниз по разрезу может быть следствием вытеснения его из поглощающего комплекса осадка. При выщелачивании минеральной части осадка в диагенезе в поровую воду извлекаются щелочные и щелочноземельные металлы, но вследствие катионного обмена ионы Mg²⁺, Na⁺ и K⁺ частично переходят в поглощающий комплекс осадка, вытесняя из него Ca²⁺, который и накапливается в поровых водах. Это подтверждается двукратным увеличением коэффициента водной миграции (K_x) для Ca на фоне уменьшения K_x для магния, натрия и калия (см. табл. 5). Подобное явление хорошо описано в литературе для поглощающего комплекса как морских [11, 30], так и пресноводных осадков озер [10, 21]. Поэтому в поровых водах осадка оз. Котокель содержания Mg²⁺, Na⁺ и K⁺ по разрезу существенно не меняются и их значения близки к концентрациям в поверхностной воде озера. Высокие значения парной корреляции для Ca и Sr в поровых водах осадка (см. табл. 4), можно объяснить схожей геохимией в поведении этих элементов.

В целом стоит отметить увеличение концентраций в поровых водах большинства химических элементов в сравнении с придонной водой (см. табл. 6), что является отражением диагенетических преобразований, протекающих в ДО: таким образом, большинство химических элементов выщелачивается в ПВ из твердой фазы осадка, изменяя химический состав поровых вод.

Можно заключить, что обогащение поровых вод Co, Ni, Sr и Pb по сравнению с придонными водами озера однозначно указывает на диагенетическое преобразование материала осадка.

Перераспределение химических элементов с переменной валентностью (Fe, Mn, S). В процессе диагенеза при смене окислительно-восстановительных условий в процессе разложения ОВ изменяются физико-химические свойства поровых вод, что влияет на распределение химических элементов, имеющих переменную валентность, в первую очередь Fe, Mn и S [8].

В распределении Fe в ПВ, которые характеризуются невысоким содержанием сульфатного иона, что характерно для многих пресноводных водоемов, наблюдается следующая особенность: высокие концентрации Fe²⁺ в верхних и нижних интервалах осадка на фоне низких концентраций в центральной части разреза (см. рис. 5). Падение концентраций Fe²⁺ и SO₄²⁻ в центральной части разреза (100-300 см) маркирует начало активного процесса сульфатредукции, при котором SO₄²⁻ восстанавливается до H₂S и связывается с Fe²⁺ с образованием пирита. Отмечается уменьшение коэффициента водной миграции Fe (см. табл. 5) в ПВ сравнительно с придонной водой, поскольку часть Fe расходуется на образование пирита и переходит в твердую фазу осадка. Это подтверждается и ростом по глубине разреза доли формы Fe, связанной с OB и сульфидами (табл. 7), а также общим увеличением количества пирита в интервале 100-300 см по данным рентгеноструктурного анализа. Отмечается рост восстановленных форм серы S(II) в твердой фазе осадка с глубиной (см. рис. 4), а также рост валовых значений S в центральной части разреза (см. табл. 1), там, где в поровых водах резко падают содержания Fe (см. рис. 5).

Рост концентраций Fe в поровых водах нижних интервалов ДО (3–4 м) связан с быстрым расходом всего сульфатного иона в процессе сульфатредукции. В отсутствие H₂S и в условиях низких значений

Таблица 7 Формы нахождения элементов из разных горизонтов осадка оз. Котокель

Гори- зонт	Эле- мент	Форма				
		I	П	Ш	IV	V
0–2 cM	Al, %	>0,01	>0,01	>0,01	0,13	1,30
	Fe, %	0,01	0,02	0,42	0,68	1,18
	Ca, %	0,32	0,29	0,14	0,09	1,72
	Mn, г/т	170	231	78	30	186
	Sr, г/т	16	12	3	2	382
88–99 cm	Al, %	>0,01	>0,01	>0,01	0,18	1,59
	Fe, %	>0,01	0,02	0,37	0,94	1,13
	Ca, %	0,28	0,23	0,10	0,11	1,73
	Mn, г/т	138	84	30	23	133
	Sr, г/т	11	6	2	3	400

Примечание. I — обменная форма; формы, связанные: II — с карбонатами, III — с оксидами и гидроксидами, IV с ОВ и сульфидами; V — остаточная форма.

Еh накапливается Fe²⁺ (без образования пирита) в ПВ нижних интервалов. По данным рентгеноструктурного анализа здесь пирит встречается на уровне следов, а еще ниже по разрезу пропадает полностью (см. рис. 2). В верхних интервалах осадка процессы похожие: Fe (III) восстанавливается до Fe (II) в условиях нехватки достаточного количества связующих лигандов (H₂S или S⁰), Eh<O накапливается в ПВ в интервале 50-100 см. В самых верхних интервалах ДО (0-20 см) со значениями Eh>0 происходит окисление на редокс-границе растворимых форм Fe (II) до малорастворимого Fe (III) и накопление его в поверхностных слоях (на что косвенно указывает повышение здесь валовых значений Fe) и, следовательно, уменьшение Fe²⁺ в ПВ на границе вода – осадок (см. рис. 5).

Распределение Mn в поровых водах существенно отличается (см. рис. 5). В условиях отрицательных значений Eh от –76 до –120 мВ в средних интервалах осадка (50–300 см) происходит восстановление малорастворимого Mn (IV) до подвижного Mn (II), который выходит в ПВ из твердой фазы и по градиенту концентраций диффундирует к верхним интервалам осадка (см. рис. 5). Поэтому в оз. Котокель Mn является самым активным водным мигрантом (32,2) (см. табл. 5) в отличие от Fe (0,1), а также имеет высокие значения коэффициента концентрации – 27,3 (см. табл. 6). Следует отметить снижение доли формы Mn, связанной с оксидами и гидроксидами, по глубине разреза донных отложений оз. Котокель (см. табл. 7).

Вследствие различия миграционных характеристик Mn и Fe (поле существования растворенного Mn²⁺ шире аналогичного поля Fe²⁺ [31, 32]) окисления марганца на границе раздела фаз осадок – вода не происходит (в отличие от Fe) и концентрации Mn²⁺ остаются высокими даже в верхних интервалах (0–10 см) со значениями Eh +10 мВ. Поэтому в поровых водах осадков оз. Котокель на границе смены окислительно-восстановительных условий (см. рис. 4) проявляется разница в поведении Mn и Fe: концентрация Fe в ПВ резко падает в верхних интервалах, тогда как концентрации Mn здесь не снижаются. Таким образом, в слабо окислительных обстановках железо окисляется быстрее, чем марганец, что хорошо согласуется с различиями в кинетике окисления – восстановления Mn и Fe по

Š

1(37) ♦ 2019

В ДО оз. Котокель наблюдается эффект так называемого «марганцевого дыхания» осадка (глобально выраженный в современном океане феномен) [32], когда потоки восстановленного Mn²⁺ по градиенту концентраций нарастают в верхних интервалах ПВ и далее поступают в озерную воду. Поэтому придонные воды оз. Котокель, по-видимому вследствие подтока Mn²⁺ из ПВ осадка, имеют повышенные концентрации Mn (135,6 мкг/л) в сравнении с исследованными нами водами озер юга Западной Сибири, которые имеют более низкие (18–28 мкг/л) содержания растворенного Mn несмотря на высокую минерализацию воды (до 1 г/л).

литературным данным [20].

Причина проявления «марганцевого дыхания» в оз. Котокель (и отсутствие такового в исследованных нами озерах юга Западной Сибири) - отсутствие карбонатов (прежде всего кальцита) в ДО, которые служат геохимическим барьером для Мп согласно [31, 32]. На фоне низких значений Eh становится возможным накопление большого количества марганца в ПВ осадка, а при отсутствии окисленного слоя на границе вода – осадок – поступление его в придонную воду озера, что хорошо согласуется с данными по восстановленным океаническим осадкам [8]. Осадки же озер юга Западной Сибири содержат большое (в среднем 25-50 %) количество карбонатов, представленных низко- и высокомагнезиальным кальцитом и являющихся геохимическим барьером для Mn²⁺. Поэтому в ПВ этих озер установлены очень низкие концентрации марганца (4–7 мкг/л, что примерно в 4-6 раз ниже, чем в поверхностных водах!) несмотря на то, что Eh < 0.

В условиях высоких концентраций Mn²⁺ (до 4 мг/л) в ПВ верхних интервалов осадка оз. Котокель, активного разложения ОВ (в результате которого выделяется большое количество СО₂), нейтральных значений рН (около 7, в отдельные годы до 9–10) и низких значений Eh становится возможным образование родохрозита. Это подтверждают данные рентгеноструктурного анализа (см. рис. 2, а) и СЭМ (см. рис. 3, в, г). Вероятно, в условиях стратификации водной толщи оз. Котокель (верхние слои хорошо аэрируются, в них поступает терригенная взвесь с марганцем, а нижние слои воды оказываются застойными) создаются благоприятные условия для осаждения в приповерхностных слоях ДО родохрозита. Также в верхних интервалах осадка установлено, что доля карбонатной формы Mn выше, чем в нижележащих (см. табл. 7). Для Са и Sr также чуть выше доля карбонатной формы в верхних горизонтах ДО.

Однако процессы образования карбонатов Mn, по-видимому, идут с очень низкой интенсивностью. На это указывает как кривая распределения Mn²⁺ (не отмечено явных снижений концентрации), так и высокие значения коэффициента водной миграции Mn, а также сильная обратная корреляция (r = -0,84) между Са и Mn.

Выводы

Поровые воды донных отложений оз. Котокель относятся к гидрокарбонатно-кальциевому классу. С глубиной наблюдается рост минерализации поровых вод, увеличение концентраций HCO₃⁻, Ca²⁺, уменьшение SO₄²⁻, уменьшение значений Eh вниз по разрезу осадка. Степень деструкции ОВ в толще осадков возрастает, что приводит к увеличению с глубиной содержаний НСО₃⁻ в поровых водах. Уменьшение концентраций SO42- вниз по разрезу косвенно подтверждает «усиление» процессов бактериальной сульфатредукции. Установлено снижение концентраций NO₃⁻, что является следствием деятельности денитрифицирующих бактерий, и рост концентраций NH₄⁺ вниз по разрезу осадка. Рост содержаний HCO₃⁻, NH₄⁺, PO₄³⁻, NO₃⁻ и Si в верхних интервалах донных отложений в сравнении с придонной водой – следствие деструкции органического вещества, в результате которой в поровые воды переходят наиболее подвижные и лабильные компоненты.

Установлено увеличение содержания Са²⁺ вниз по разрезу как результат его вытеснения из поглощающего комплекса осадка. В диагенезе при выщелачивании минеральной части осадка в поровую воду извлекаются щелочные и щелочноземельные металлы, но вследствие катионного обмена ионы Mg²⁺, Na⁺ и K⁺ частично переходят в поглощающий комплекс осадка, вытесняя из него Са²⁺, который и накапливается в поровых водах.

В диагенезе при смене окислительно-восстановительных условий в процессе разложения органического вещества изменяются физико-химические свойства поровых вод, что влияет на распределение химических элементов, имеющих переменную валентность, в первую очередь Fe, Mn и S. Падение концентраций Fe²⁺ и SO₄²⁻ в центральной части разреза маркирует начало активного процесса сульфатредукции, при котором SO₄²⁻ восстанавливается до H_2S и связывается с Fe^{2+} с образованием пирита. С глубиной отмечается рост восстановленных форм серы S (II) в твердой фазе осадка, а также рост валовых значений S вниз по разрезу. В диагенезе в поровых водах увеличиваются концентрации Mn²⁺, который по градиенту концентраций поступает в верхние интервалы осадка, где и накапливается. В условиях высоких концентраций Mn²⁺ и активной минерализации ОВ при низких значениях Eh в верхних интервалах осадка становится возможным образование родохрозита.

Работа выполнена при финансовой поддержке проекта РФФИ 18–35–00072 мол_а в рамках государственного задания № 0330-2106-0011. Аналитические исследования проведены в ЦКП многоэлементных и изотопных исследований СО РАН.

СПИСОК ЛИТЕРАТУРЫ

1. Алекин О. А. Химический анализ вод суши. – Л.: Гидрометеоиздат, 1954. – 202 с.

2. Аномалии состава поровых вод донных осадков Байкала / Л. З. Гранина, Е. Каллендер, И. С. Ломоносов и др. // Геология и геофизика. – 2001. – Т. 42, № 1–2. – С. 362–367.

3. Биогеохимия планктоногенного сапропеля озера Котокель (Прибайкалье) / Г. А. Леонова, В. А. Бобров, А. Е. Мальцев и др. // Биогеохимия техногенеза и современные проблемы геохимической экологии: матер. IX Междунар. биогеохим. школы. Т. 1. – Барнаул: ООО «Пять плюс», 2015. – С. 53–56.

4. Брезгунов В. С., Ферронский В. И. Макрои микроэлементы в поровых водах глубинных областей южного и среднего Каспия // Водные ресурсы. – 2010. – Т. 37, № 6. – С. 700–708.

5. **Бруевич С. В.** Проблемы химии моря. – М.: Наука, 1978. – 335 с.

6. Волков И. И. Геохимия серы в осадках океана. – М.: Наука, 1984. – 272 с.

7. Воробьева Л. А. Химический анализ почв: учебник. – М.: Изд-во МГУ, 1998. – 272 с.

8. **Геохимия** диагенеза осадков Тихого океана (трансокеанский профиль) / И. И. Волков, Н. Н. Жабина, М. В. Иванов и др.; ред. Э. А. Остроумов. – М.: Наука, 1980. – 288 с.

9. **ГОСТ** Р 57162–2016. Вода. Определение содержания элементов методом атомно-абсорбционной спектрометрии с электротермической атомизацией. – М.: Стандартинформ, 2016. – 19 с.

10. **Гранина Л. 3.** Ранний диагенез донных осадков озера Байкал. – Новосибирск: Акад. изд-во «Гео», 2008. – 156 с.

11. Гурский Ю Н. Геохимия литогидросферы внутренних морей. Т. 2. Иловые воды Красного и Средиземного морей. Зоны эстуариев. Закономерности формирования и классификация вод литогидросферы. – М.: ГЕОС. 2007. – 450 с.

12. Мальцев А. Е., Бобров В. А., Леонова Г. А. Особенности распределения Si в сапропелях разного генезиса (планктонного и макрофитного) на примере озер Большие Тороки и Котокель // Современные направления развития геохимии: матер. Всерос. конф., посвящ. 60-летию Института геохимии СО РАН и 100-летию со дня рождения акад. Л. В. Таусона. – Иркутск: Оттиск, 2017. – С. 120.

13. Мальцев А. Е., Богуш А. А., Леонова Г. А. Особенности химического состава поровых вод голоценового разреза сапропеля оз. Духовое (Юж-

ное Прибайкалье) // Химия в интересах устойчивого развития. – 2014. – Т. 22, № 5. – С. 517–534.

14. **Массовая** концентрация гидрокарбонатов и величина щелочности поверхностных вод суши и очищенных сточных вод. Методика выполнения измерений титриметрическим методом: РД 52.24.493–2006т. – Ростов-на-Дону, 2006. – 37 с.

15. **Мизандронцев И. Б.** К геохимии поровых растворов // Динамика байкальской впадины. – Новосибирск: Наука, 1975. – С. 203–230.

16. **Методика** выполнения измерений массовой концентрации сульфат-ионов в пробах природных и сточных вод турбидиметрическим методом: ПНД Ф 14.1:2.159–2000. – М., 2005. – 11 с.

17. **Методика** выполнения измерений массовой концентрации хлоридов в пробах природных и очищенных сточных вод аргентометрическим методом: ПНД Ф 14.1:2.96–97. – Ростов-на-Дону, 2004. – 19 с.

18. **Об источниках** энергии в процессе диагенеза (на примере Черного моря) / А.Ю. Леин, И. И. Русанов, Г. А. Павлова и др. // Литология и полезные ископаемые. – 2011. – № 2. – С. 154–169.

19. **Основной** солевой состав и карбонатное равновесие в поровой воде осадков эстуария реки Раздольной (Амурский залив, Японское море) / Г. Ю. Павлова, П. Я. Тищенко, Н. Д. Ходоренко и др. // Тихоокеанская геология. – 2012. – Т. 31, № 3. – С. 69–80.

20. **Особенности** распределения микроэлементов в процессах раннего диагенеза донных осадков Белого моря / Л. Л. Демина, Д. Ф. Будько, Т. Н. Алексеева и др. // Геохимия. – 2017. – № 1. – С. 107–112.

21. **Особенности** химического состава поровых вод донных отложений различных районов озера Байкал / Т. В. Погодаева, Т. И. Земская, Л. П. Голобокова и др. // Геология и геофизика. – 2007. – Т. 48, № 11. – С. 1144–1160.

22. Палинологическое исследование донных отложений озера Котокель (район озера Байкал) / Е. В. Безрукова, П. Е. Тарасов, Н. В. Кулагина и др. // Геология и геофизика. – 2011. – Т. 52, № 2. – С. 586–595.

23. **Перельман А. И.** Геохимия природных вод. – М.: Наука, 1982. – 154 с.

24. Пушкина З. В., Степанец М. И., Черкасова Е. В. Железо, марганец, медь, никель и ванадий в иловых водах осадков северо-восточной части Тихого океана // Литология и полезные ископаемые. – 1977. – № 3. – С. 3–16.

25. Ранний диагенез в современных донных осадках Двинского залива Белого моря / Н. В. Политова, А. А. Клювиткин, А. Н. Новигатский и др. // Океанология. – 2016. – Т. 56, № 5. – С. 771–783.

26. **Романкевич Е. А.** Геохимия органического вещества в океане. – М.: Наука, 1977. – 256 с.

27. **Россолимо Л. Л.** Озерное накопление кремния и его типологическое значение. – М.: Наука. 1971. – 104 с.

28. Руководство по методам гидробиологического анализа поверхностных вод и донных отложений / под ред. В. А. Абакумова. – Л.: Гидрометеоиздат, 1983. – 239 с.

29. Титова К. В., Кокрятская Н. М. Соединения серы в воде и донных осадках малых озер юго-запада Архангельской области // Вестн. МГОУ. – 2013. – № 2. – С. 101–105.

30. Шишкина О. В. Геохимия морских и океанических иловых вод. – М.: Наука, 1972. – 227 с.

31. Юдович Я. Э., Кетрис М. П. Геохимические индикаторы литогенеза (литологическая геохимия). – Сыктывкар: Геопринт, 2011. – 742 с.

32. Юдович Я. Э., Кетрис М. П. Геохимия марганца. – Сыктывкар: Геопринт, 2014. – 540 с.

33. **Normierung** von Extraktionsexperimenten zur Bestimmung der Bindung von Radiocaesium an Sedimente des Luganersees / E. Klemt, S. Kaminski, R. Miller et al. // Umweltradioaktivität und Strahlendosen in der Schweiz. Bundesamt für Gesundheit. – 2000. – Vol. 4.4. – P. 1–5.

REFERENCES

1. Alekin O.A. *Khimicheskiy analiz vod sushi* [Chemical analysis of land waters]. Leningrad, Gidrometeoizdat Publ., 1954. 202 p. (In Russ.).

2. Granina L.Z., Kallender Ye., Lomonosov I.S., et al. [Anomalies in the composition of the pore waters of Baikal bottom sediments]. *Geologiya i geofizika – Geology and geophysics*, 2001, vol. 42, no. 1–2, pp. 362–367. (In Russ.).

3. Leonova G.A., Bobrov V.A., Maltsev A. E., et al. [Biogeochemistry of planktonogenic sapropel of the Kotokel Lake (Baikal region)]. *Biogeokhimiya tekhnogeneza i sovremennyye problemy geokhimicheskoy ekologii: mater. IX mezhdunar. biogeokhim. shkoly* [Biogeochemistry of technogenesis and modern problems of geochemical ecology: proc. IX International biogeochemical school]. Barnaul, Pyat plyus Publ., 2015, vol. 1, pp. 53–56. (In Russ.).

4. Brezgunov V.S., Ferronskii V.I. Macro- and microelements in the interstitial waters of deep-water areas of the southern and middle Caspian Sea. *Water Resources*, 2010, vol. 37, no. 6, pp. 825–833.

5. Bruevich S.V. *Problemy khimii morey* [Problems of the Sea Chemistry]. Moscow, Nauka Publ., 1978. 335 p. (In Russ.).

6. Volkov I.I. *Geokhimiya sery v osadkakh okeana* [Geochemistry of sulfur in ocean sediments]. Moscow, Nauka Publ., 1984. 272 p. (In Russ.).

7. Vorobieva L.A. *Khimicheskiy analiz pochv: Uchebnik* [Soil Chemical Analysis. Textbook]. Moscow, MGU Publ., 1998. 272 p. (In Russ.).

8. Volkov I.I., Zhabina N.N., Ivanov M.V., et al. *Geokhimiya diageneza osadkov Tikhogo okeana (transokeanskiy profil')* [Geochemistry of diagenesis of the Pacific Ocean sediments (transoceanic profile)]. Moscow, Nauka Publ., 1980. 288 p.(In Russ.).

9. GOST R57162–2016. Voda. Opredeleniye soderzhaniya elementov metodom atomno-absorbtsionnoy spektrometrii s elektrotermicheskoy atom*izatsiyey* [State Standard R57162–2016. Water. Determination of the content of elements by atomic absorption spectrometry with electrothermal atomization]. Moscow, Standartinform Publ., 2016. 19 p. (In Russ.).

10. Granina L.Z. *Ranniy diagenez donnykh osadkov ozera Baykal* [Early diagenesis of Lake Baikal bottom sediments]. Novosibirsk, Geo Publ., 2008. 156 p. (In Russ.).

11. Gurskii Iu.N. *Geokhimiya litogidrosfery vnutrennikh morey. llovyye vody Krasnogo i Sredizemnogo morey. Zony estuariyev. Zakonomernosti formirovaniya i klassifikatsiya vod litogidrosfery* [Geochemistry of lithohydrospheres of the internal seas. Silt waters of the Red and Mediterranean seas. Estuary zones. Patterns of formation and classification of lithosphere water. Vol. 2]. Moscow, GEOS Publ., 2007. 450 p. (In Russ.).

12. Maltsev A.E., Bobrov V.A., Leonova G.A. [Features of the Si distribution in sapropels of different genesis (plankton and macrophyte) on the example of Lakes Big Toroki and Kotokel]. Sovremennyye napravleniya razvitiya geokhimii: mater. Vseros. konf., posvyashch. 60-letiyu Instituta geokhimii SO RAN i 100-letiyu so dnya rozhdeniya akademika L.V.Tausona [Modern directions of geochemistry development: proc. All-Russian conf., dedicated the 60th anniversary of the Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences and the 100th anniversary of the birth of Academician L.V.Towson]. Irkutsk, Ottisk Publ., 2017, p. 120. (In Russ.).

13. Maltsev A.E., Bogush A.A., Leonova G.A. [Features of the chemical composition of the pore waters of the Holocene sapropel section of Lake Dukhovoye (Southern Baikal)]. *Khimiya v interesakh ustoychivogo razvitiya* – *Chemistry for Sustainable Development*, 2014, vol. 22, no. 5, pp. 517–534. (In Russ.).

14. Massovaya kontsentratsiya gidrokarbonatov i velichina shchelochnosti poverkhnostnykh vod sushi i ochishchennykh stochnykh vod. Metodika vypolneniya izmereniy titrimetricheskim metodom [Mass concentration of hydrocarbons and alkalinity of the land surface water and treated wastewater. Titrimetric measurement technique]. RD52.24.493–2006т. Rostov-on-Don, 2006. 37 p. (In Russ.).

15. Mizandrontsev I.B. *K geokhimii porovykh rastvorov* [To the geochemistry of pore solutions]. *Dinamika baykal'skoy vpadiny* [Dynamics of the Baikal Basin]. Novosibirsk, Nauka Publ., 1975, pp. 203–230. (In Russ.).

16. Metodika vypolneniya izmereniy massovoy kontsentratsii khloridov v probakh prirodnykh i ochishchennykh stochnykh vod argentometricheskim metodom [Methods for measuring the mass concentration of chlorides in samples of natural and treated wastewater using the argentometric method]. PND F 14.1:2.96– 97. Rostov-on-Don, 2004. 19 p. (In Russ.).

17. Metodika vypolneniya izmereniy massovoy kontsentratsii sul'fat-ionov v probakh prirodnykh *i stochnykh vod turbidimetricheskim metodom* [Methods for measuring the mass concentration of sulfate ions in natural and wastewater samples using the turbidimetric method]. PND F 14.1:2.159–2000. Moscow, 2005. 11 p. (In Russ.).

18. Lein A.Iu., Rusanov I.I., Pavlova G.A., et al. [About energy sources in the diagenesis (on the example of the Black Sea)]. *Litologiya i poleznye iskopayemye* – *Lithology and mineral resources*, 2011, no. 2, pp. 154–169. (In Russ.).

19. Pavlova G.lu., Tishchenko P.Ia., Khodorenko N.D., et al. [Major ion composition and carbonate equilibrium in the sediment pore water of the Razdolnaya river of Amur Bay, the Sea of Japan)]. *Geology of the Pacific ocean*, 2012, vol. 6, no. 3, pp. 251–262.

20. Demina L.L., Budko D.F., Alekseieva T.N., et al. Partitioning of trace elements in the process of early diagenesis of bottom sediments of the White Sea. *Geochemistry International*, 2017, vol. 55, no. 1, pp. 144–149.

21. Pogodaieva T.V., Zemskaia T.I., Golobokova L.P., et al. Chemical composition of pore waters of bottom sediments in different Baikal basins. *Russian geology and geophysics*, 2007, vol. 48, no.11, pp. 886– 900.

22. Bezrukova Ye.V., Abzaeva A.A., Letunova P.P., et al. [Palynological study of Lake Kotokel bottom sediments (Lake Baikal region)]. *Russian geology and geophysics*, 2011, vol. 52, no. 4, pp. 458–465.

23. Perelman A.I. *Geokhimiya prirodnykh vod* [Geochemistry of natural waters]. Moscow, Nauka Publ., 1982. 154 p. (In Russ.).

24. Pushkina Z.V., Stepanets M.I., Cherkasova E.V. [Iron, manganese, copper, nickel and vanadium in the silt waters of sediments of the northeastern Pacific Ocean]. *Litologiya i poleznyye iskopayemyye*, 1977, no. 3, pp. 3–16. (In Russ.).

25. Politova N.V., Kliuvitkin A.A., Novigatskii A.N., et al. Early diagenesis in recent bottom sediments of the Dvina Bay (White Sea). *Oceanology*, 2016, vol. 56, no.5, pp. 702–713.

26. Romankevich E.A. *Geokhimiya organicheskogo veshchestva v okeane* [Geochemistry of organic matter in the ocean]. Moscow, Nauka Publ., 1977. 256 p. (In Russ.).

27. Rossolimo L.L. *Ozernoye nakopleniye kremniya i yego tipologicheskoye znacheniye* [Lake accumulation of silicon and its typological significance]. Moscow, Nauka Publ., 1971. 104 p. (In Russ.).

28. Rukovodstvo po metodam gidrobiologicheskogo analiza poverkhnostnykh vod i donnykh otlozheniy [Guidance on methods of hydrobiological analysis of surface water and bottom sediments]. Leningrad, Gidrometeoizdat Publ., 1983. 239 p. (In Russ.).

29. Titova K.V., Kokriatskaia N.M. [Sulfur compounds in water and bottom sediments of small lakes in the south-west of the Arkhangelsk region]. *Vestnik MGOU*, 2013, no. 2, pp. 101–105. (In Russ.).

30. Shishkina O.V. *Geokhimiya morskikh i okeanicheskikh ilovykh vod* [Geochemistry of marine and oceanic silt waters]. Moscow, Nauka Publ., 1972. 227 p. (In Russ.).

31. ludovich Ia.E., Ketris M.P. *Geokhimicheskie indikatory litogeneza (litologicheskaya geokhimiya)* [Geochemical indicators of lithogenesis (lithological geochemistry)]. Syktyvkar, Geoprint Publ., 2011. 742 p. (In Russ.). 32. ludovich Ia.E., Ketris M.P. *Geokhimiya margantsa* [Manganese geochemistry]. Syktyvkar, Geoprint Publ., 2014. 540 p.(In Russ.).

33. Klemt E., Kaminski S., Miller R., et al. Normierung von Extraktionsexperimenten zur Bestimmung der Bindung von Radiocaesium an Sedimente des Luganersees. *Umweltradioaktivität und Strahlendosen in der Schweiz. Bundesamt für Gesundheit*, 2000, vol. 4.4, pp. 1–5.

© А. Е. Мальцев, Г. Л. Леонова, Л. В. Мирошниченко, Л. М. Кондратьева, В. А. Бобров, Ю. С. Восель, С. Б. Заякина, А. С. Шавекин, С. К. Кривоногов, 2019