

УДК (553.411.068.5+553.87.068.5)(571.56-17)

РЕГИОНАЛЬНЫЙ ПРОГНОЗ ЗАПАСОВ РОССЫПНОГО МИНЕРАЛЬНОГО СЫРЬЯ КУЛАРСКОГО ГОРНО-ПРОМЫШЛЕННОГО РАЙОНА

В. Ф. Крашенинин

АО «Куларзолото», прииск «Центральный», Омск, Россия

Рассмотрены основные критерии регионального прогноза значимых запасов россыпного минерального сырья Куларского горно-промышленного района (золота, куларита, кварца и др.). Определена связь областей промышленного накопления указанных минералов с приконтактовой (продуктивной) зоной денудационного среза пермских и триасовых отложений Восточно-Верхоянской складчатой зоны, а золото-кварцевых россыпей — со свитой даек лампрофиров и конгломератами всех стратиграфических уровней. Подсчитанные ресурсы золото-редкоземельно-кварцевого сырья вместе с ожидаемой алмазоносностью территории, делают изучаемый район первоочередным промышленным объектом для возрождения былого экономического потенциала Булунского и Усть-Янского улусов Заполярной Якутии, но уже в качестве источника комплексного полиминерального алмаз-золото-редкоземельно-редкометалльно-кварцевого сырья.

Ключевые слова: прогноз, Северная Якутия, Куларский горно-промышленный район, поисковые признаки, россыпи, лампроиты, алмазы, конгломераты, ресурсы, золото, куларит, кварц.

REGIONAL FORECAST OF PLACER MINERAL RESERVES OF THE KULAR MINING-INDUSTRIAL DISTRICT

V. F. Krasheninin

Kularzoloto, Zentralny Mine, Omsk, Russia

The article discusses the main criteria for the regional forecast of significant reserves of placer raw materials of the Kular mining-industrial region (MIR): gold, kularite, quartz. The connection of the industrial accumulation areas of these minerals with the near-contact (productive) zone of a denudation section of the Permian and Triassic deposits of the Eastern-Verkhoyansk folded zone, and that of gold-quartz placers with a dike swarm of lamprophyres and conglomerates of all stratigraphic levels are characterized. The estimated resources of gold-rare-earth-quartz raw materials, along with the actually expected diamond-bearing territory, put forward the Kular MIR as a primary industrial facility for the revival of the former economic potential of the Bulunsky and Ust-Yansky Uluses of Polar Yakutia, but already as a source of integrated polymineral diamond-gold-rare earth-quartz raw materials.

Keywords: forecast, Northern Yakutia, Kular mining-industrial region, indicators, placers, lamproites, diamonds, conglomerates, resources, gold, kularite, quartz.

DOI 10.20403/2078-0575-2019-3-110-116

Обязательно исходя из прошлого, держась за настоящее, мы живем будущим.

В. Пикуль. «Пером и шпагой»

По нашему мнению, в России, заканчивается не россыпное золото, а время старых технологий, позволяющих вести добычу, не считаясь с затратами. Нужно быть реалистами — ЭТО ВРЕМЯ УЖЕ ПРОШЛО.

Б. Кавчик, В. Пятаков, ОАО «Иргиредмет»

История вопроса

Куларский ГПР в административном отношении принадлежит к восточной части Булунского и к западной части Усть-Янского районов (улусов) [7, с. 110] и включает следующие россыпные узлы (см. таблицу): Улахан-Сисский (I), Арга-Юрях-Омолой-Солурский (II), Ойуун-Юрэгэ-Суордахский (III) и Джанкы-Куйга-Кюндюлюнгский (IV), расположенные в пределах краевых структур Омолойского и Куларского сегментов Восточно-Верхоянской складчатой зоны [6, с. 12] — в непосредственной близости от восточной окраины Сибирской платформы [5, с. 8].

Редкоземельно-золото-кварцевые узлы I—III находятся в междуречье приустьевых частей Яны (левобережья) и Омолоя. Коренной плотик россыпей здесь сложен палеозойско-мезозойскими отложениями, относящимися к Куларскому стратиграфическому району Полоусненского субрегиона [6, с. 12]. Золото-кварцевый узел IV дренируется правыми притоками р. Яна, россыпи которых подстилаются только мезозоидами, принадлежащими уже к Эрчинскому стратиграфическому району Святоноского субрегиона [6, с. 12].

После применения геолого-проспекторской сравнительной методики «ищи руду около руды» [9,

с. 112], генетического анализа строения россыпей [3] и предварительного этапа корреляционного анализа связей основных геологических факторов изученных узлов I–VI с прогнозируемыми россыпными объектами оценен результативный показатель последних в виде прогнозных ресурсов (категорий P_1 – P_3) золота, куларита, кварца и др. в одно- и многопластовых, в том числе погребенных, россыпях.

Россыпное минеральное сырье Куларского ГПР *Золото*

Движение запасов россыпного золота приведено в таблице. Из россыпей I-IV на приисках и в артелях «Куларзолото» в 1963-1995 гг. (до его принудительного банкротства) добыто свыше 155 т золота, примерно 2 т - до 2001 г. включительно. При технологических потерях 28 % тонкого и мелкого золота в хвостах промывки промприборов получено 218 т. На балансе Республики Саха (Якутия) на 01.01.1998 оставалось почти 17,0 т россыпного золота категорий А+В+С₁ для подземной и открытой добычи при среднем содержании 1,73 г/м³. Прогнозные ресурсы категории Р₁ техногенных (в понимании ГКЗ [4, с. 14] месторождений составят до 61 т россыпного мелкого и тонкого золота при среднем содержании 0,25 г/м³. Следует отметить, что эксплуатационные запасы золота, представляющие промышленный интерес на современном этапе при 40%-ных потерях в процессе промывки техногенных песков, не будут превышать 24 т.

Всего разведанных запасов и ресурсов россыпного золота по категориям $A+B+C_1+C_2+P_1$ в рассматриваемых узлах Куларского золотоносного района: добыто 157 т, осталось 17 т, технологические потери на 01.01.2018 составили 61 т (см. таблицу).

Кварцевое сырье

Среднее содержание золота на разведанных площадях Куларского ГПР 2,72 г/м³. Для извлечения 218 т золота в 1963-2001 гг. промыто почти 80,0 млн м³ породы («песков») продуктивного пласта инстративного и субстративного аллювия – основной зоны аккумуляции россыпей золота, куларита, кварца и пр. В составе обломочной массы аллювия содержалось в среднем не менее 20 % (около 16,0 млн м³) гальки, валунов, обломков в основном белого кварца неравномерной степени окатанности и сортированности, в том числе горного хрусталя и его аналога – химически чистого жильного гранулированного кварца [9, с. 111]. Высокое качество силикатного сырья обусловлено природным обогащением кристаллов под действием временных водных потоков, что установлено при разработке аналогичных россыпей на Южном Урале [13, с. 4].

Почти 70 % (11,21 млн м³) ресурсов категории P_2 — гальки и обломки кварца размером до 10 см при промывке песков — складировано в отвалах стакерной гали шлюзовых гидровашгердных промприборов. В настоящее время промышленный интерес

представляют техногенные месторождения [4, с. 14] с сохранившимися отвалами вашгердной гали, в составе которой содержится до 30 %, или 4,79 млн $\rm M^3$ (ресурсы категории $\rm P_1$) валунов и глыб жильного высококачественного кварца размером до 0,5 м.

Как уже указывалось, на балансе Республики Саха (Якутия) осталось примерно 17,0 т запасов россыпного золота при среднем его содержании 1,73 г/м³. Это позволяет увеличить прогнозную оценку кварцевого сырья категории P_2 еще на 1,37 млн м³ (суммарно 12,58 млн м³), категории P_1 — на 0,59 млн м³ (суммарно 5,38 млн м³).

Куларит

В недрах I–III узлов содержится 293,54 тыс. т куларита (см. таблицу) — аутигенной разновидности монацита с промышленными содержаниями 16 редкоземельных и редкометалльных элементов (неодима, самария, европия, иттрия, иттербия и др.).

«Считается, что источником куларита являются углеродисто-метатерригенные (черносланцевые) породы карбона и перми... размыв которых в кайнозое привел к накоплению куларита в палеогеновых, неогеновых и четвертичных толщах» [12, с. 437]. Эти толщи — зоны привноса и транзита россыпных минералов.

Накопление повышенных концентраций куларита можно объяснить позднепермской трансгрессией моря, обусловленной отступлением бровки материкового склона на юго-запад – в сторону платформы с погружением ложа прогиба, продолжавшегося до середины раннеоленекского времени, где «в условиях застойных котловин за счет реакций сульфатредукции образовалась аутигенная вкрапленность пирита и железистого карбоната» [6, с. 42], а также куларита in situ. Это связано с активной деятельностью сульфатвосстанавливающих бактерий в восстановительной среде пермских отложений тарбаганнахской (P₁tr₁) и туогучанской свит (P₁tg₁) [6, с. 12–17] с «повышенной углероди*стостью*» (выделено мною. – *В. К.*) [6, с. 2]. Причем куларит отмечается в россыпных месторождениях золота в долинах водотоков, дренирующих приконтактовую зону пермских и триасовых отложений [6, с. 57]. Данная зона коррелируется с контрастными:

– шлиховыми ореолами редкоземельного монацита, золота и, возможно, даже алмазов [11, с. 4];

– вторичными геохимическими ореолами лантана, иттрия, иттербия, церия на западном фланге Улахан-Сисского параавтохтона, лантана и церия – на восточном [6, с. 55].

Важно помнить, что многие фосфаты возникают за счет первичных сульфидов и являются хорошими индикаторами сульфидных месторождений в зоне окисления [10, с. 439].

Установленные геологами ГУ ГГП «Янгеология» указанные стратиграфические и литолого-фациальные косвенные поисковые признаки наряду с прямыми минерагеническими легли в основу подсчета

Региональный прогноз запасов (ресурсов) россыпного минерального сырья Куларского ГПР

Параметры	Россыпной узел				
	l	II	, III	IV	Всего
Площадь, км²					
общая	5900	3200	3325	5820	18245
разведанная	4100	1940	2000	2670	10710
прогнозная	1800	1260	1325	3150	7535
Запасы Au по кат. A+B+C ₁ +C ₂ , т					
разведано	171	38	19	6,8	234,8
добыто	121	21	11	4	157
Технологические потери Au на 01.01.2018, ресурсы P_1					
Т	42	12	5	1,8	60,8
%	25,7	36,3	31,2	31,0	27,9
Осталось в недрах Au (т) на 01.01.1998					
запасов категорий A+B+C ₁	8	5	3	1	17
ресурсов P ₃	75,06	24,7	12,58	7,875	120,21
K_3 , $T/\kappa M^2$	0,0417	0,0196	0,0095	0,0025	0,0219
Запасы куларита, тыс. т по категориям					
C_2	_	7,778	_	_	7,78
P_1	0,21	74,23	_	_	74,44
P_2	19,65	_	_	_	19,65
P_3	53,36	61,04	77,27	_	191,67
Bcero	73,22	143,05	77,27	_	293,54
K_p , T/KM^2	12,411	42,271	42,271	_	16,088
Ресурсы кварцевого сырья по категориям, млн м ³					
P_1	3,66	0,95	0,52	0,25	5,38
P_2	8,55	2,22	1,21	0,6	12,58
P_3	5,36	2,06	1,14	0,98	9,54
Bcero	17,57	5,23	2,87	1,83	27,5

Примечания. K_3 (коэффициент продуктивности (золотоносности) россыпного узла) — отношение разведанного количества россыпного золота к разведанной площади узла. K_p (коэффициент редкоземельности) — отношение прогнозируемого количества куларита к продуктивной площади.

ресурсов золота, куларита и кварцевого сырья россыпных узлов Куларского ГПР. Кроме того, достаточно четко выраженные региональные поисковые признаки алмазоносности западного и восточного крыльев Улахан-Сисского антиклинория делают территорию бывшего Куларского ГОКа весьма перспективной для возрождения его былого экономического потенциала, но уже в качестве объекта комплексного полиминерального алмаз-золоторедкоземельно-редкометалльно-кварцевого сырья.

Характеристика россыпных узлов

I. Улахан-Сисский редкоземельно-золото-кварцевый узел

Общая его площадь около 5900 км², в том числе разведанная часть 4100 км^2 (центральная 1600 км^2 , южная 2500 км^2) и прогнозная (северная) 1800 км^2 .

При разведанных запасах 171 т и среднем содержании 2,8 г/м 3 коэффициент золотоносности K_3 разведанных площадей узла 0,0417 т/км 2 (см. таблицу). Объем попутной добычи кварцевого сырья должен составить 12,21 млн M_3 , в том числе ресурсы

категории P_2 8,55 млн m^3 (кварц стакерной гали) и P_1 (кварц вашгердной гали) 3,66 млн m^3 .

Центральная часть (I-Б) составляет территорию листа Госгеолкарты м-ба 1:200 000 R-53-IX, X, ограниченную координатами 70°40′-71°00′ с. ш. и 134-135° в. д. [6, с. 3]. Включает золото-кварц-куларитовые россыпи (с севера на юг): Будыка, Кыра-Онкучах, Улахан-Онкучах, Энтузиастов, Улахан-Батор-Юрех, Светка, Коллективный, Кюсентей-Салаата, Маркой-Юрэгэ, Кюсентей (Двойной), Иэкийэс (Ясный), Улахан-Юрюйе (Шутник), Конечный, Маманья (им. Старкова) и др. По данным «Янгеологии», из 25 разведанных россыпей только три исследованы на наличие редкоземельного монацита. Они приурочены к долинам ручьев, дренирующих приконтактовую зону денудационного среза [2] пермских и триасовых отложений. Продуктивная площадь 17 км² [6, с. 70]. Зафиксированы содержания куларита до 123 г/м³ с суммарными прогнозными ресурсами по категории Р₁ 211 т [6, с. 70], а в остальных 22 россыпях ресурсы категории Р₂ составят не менее 19647 т. Это попутное сырье при золотобыче складировано в хвостохранилищах отработанных россыпей.

Коэффициент редкоземельности K_p разведанной площади 12,411 т/км².

Северный фланг (I-A) ограничен координатами 71° – $71^{\circ}20'$ с. ш. и 134–135° в. д. (лист R-53-IX, X [6, с. 25]). Прогнозная площадь 1800 км².

Кайнозойские отложения мощностью до 438 м [7, с. 25], дренируются на дневной поверхности современными водотоками (Куранах, Дергях, Буор-Юрях, Кусаган-Улах и др.). Древние россыпи (зоны аккумуляции золота, кварца, куларита и, вероятно, алмазов), скорее всего, выполняют днища погребенных речных долин [6, с. 25] древней гидросети, полностью перекрытой мощной толщей рыхлых отложений. Продуктивные аллювиальные отложения образовались в палеогеновое время за счет перемыва пород площадной коры выветривания мощностью 1-10 м, и линейной коры с установленной мощностью около 40 м. В них преобладает ильменит-куларитовая ассоциация [6, с. 26] (зоны привноса и транзита). На перспективность рассматриваемых погребенных золотоносных россыпей (возможно, с алмазами) Приморской низменности указывали еще в 1982 г. географы и геологи МГУ. Они установили, что водотоки, сформировавшие указанные россыпи, имели сток в северных и северо-восточных румбах, хотя в них отмечаются участки или притоки северо-западного направления. Такая особенность россыпесодержащих водотоков определяется тем, что они располагаются в зоне Приморского разлома. Продуктивные пласты в палеодолинах рассматриваемых водотоков располагаются только в нижнем галечном горизонте омолойской свиты палеогена. В ее составе содержится около 20 % обломков преимущественно белой окраски, размером от 2–3 см до 0,5 м [7]. Транзитная субмеридиональная долина Пра-Кюэгюлюра, сформировавшаяся в начале позднего эоцена [6, с. 44], подтверждает указанное простирание прогнозируемой россыпной (погребенной) зоны.

При $\rm K_3$ 0,0417 т/км² и $\rm K_p$ 12,411 т/км² ресурсы категории $\rm P_3$ прогнозной северной площади узла следующие: золота 75,06 т, куларита 22339 т и кварца (попутной добычи) 5,36 млн м³.

Южный фланг (I-B) протягивается от 70°40′ до 70°05′ с. ш. Площадь 2500 км². Включает золото-куларит-кварцевые россыпи Куччугуй-Кюегюлююр, Бургуаат (Верхний, Средний, Нижний, Терраса, Эмиссь, Нээтик, Керчиик), Эттинээх, Суор-Уйалаах (Кристалл, Аленка), Кюегюлююр-Юрэгэ, Кель-Сэннээх, Золотистая и др. По заключению «Янгеологии», наиболее перспективны в отношении россыпной металлоносности редкоземельных элементов южные части Куларской зоны, прежде всего Солурский узел [6, с. 67]. Ресурсы куларита по категории Р₃ составят здесь не менее 31027 т.

Итак, промышленное развитие Улахан-Сисского узла на современном этапе возможно при наличии следующих видов минерального сырья для комплексной разработки:

- запасы россыпного золота 8 т (кат. A+B+C₁), ресурсы 75,06 т (кат. P₃);

- ресурсы куларита 73224 т (211 т по кат. P_1 , 19647 т по кат. P_2 , 53366 т по кат. P_3), в основном ло-кализованные в продуктивной приконтактовой зоне палеозойских и мезозойских отложений;
- ресурсы кварцевого сырья 17,57 млн м³ (3,66 млн м³ по кат. P_1 , 8,55 млн м³ по кат. P_2 , 5,36 млн м³ по кат. P_3).

II. Арга-Юрях-Омолой-Солурский редкоземельно-золото-кварцевый узел

Площадь узла 3200 км², в том числе изученная 1940 км². Разведаны и эксплуатировались золото-кварц-куларитовые россыпи Левая, Чистая, им. Переяслова, Урасалаах, Центральная (Верхняя, Нижняя), Солур и др. Прогнозная площадь составляет 1260 км² (западного фланга 1125 км², северного 135 км²) и включает в основном погребенные россыпи левобережья р. Омолой и бассейна ее левого (р. Арга-Юрях) и правого (р. Улахан-Кюегюлююр) притоков.

Разведанные запасы россыпного золота 38 т, среднее его содержание 2,4 г/м³, $\rm K_3$ 0,0196 т/км² (см. таблицу). Объем попутной добычи кварцевого сырья при таких запасах золота может достичь 3,17 млн м³ (2,22 млн м³ по кат. $\rm P_2$ — кварц стакерной гали, 0,95 млн м³ по кат. $\rm P_1$ — кварц вашгердной гали). Прогнозные ресурсы золота составляют 24,696 т по категории $\rm P_3$, что также увеличивает прогнозные ресурсы попутного кварцевого сырья категории $\rm P_3$ на 2,06 млн м³.

Другой полезный компонент россыпей — куларит — также не извлекался и складировался в хвостохранилищах золотого обогащения. Опытные работы по подсчету его запасов категории C_2 на месторождении Центральном были проведены геологами Янской ГРЭ (3018 т) и ГОКа «Куларзолото» (4760 т). Суммарные запасы куларита 7778 т, в россыпях месторождения Центрального они приурочены к долинам ручьев, дренирующих также приконтактовую продуктивную зону (184 км²) пермских и триасовых отложений (K_p 42,271 т/км², см. таблицу). Значит, хвостохранилища оставшихся россыпей, суммарная площадь денудационного среза которых составляет 1756 км², могут вмещать 74227 т (по кат. P_1) куларита, а оставшаяся территория (1444 км²) — 61039 т.

Для дальнейшего промышленного развития Солурского узла необходимо наличие следующих видов и объемов минерального сырья для комплексной разработки:

- запасы россыпного золота (кат. A+B+C₁) 5 т и ресурсы (кат. P₃) 24,7 т;
- запасы куларита 7778 т (кат. C_2), ресурсы 74227 т (кат. P_1) и 61039 т (кат. P_3);
- ресурсы кварцевого сырья 0,95 млн $м^3$ (кат. P_1), 2,22 млн m^3 (кат. P_2), 2,06 млн m^3 (кат. P_3).

III. Ойуун-Юрэгэ-Суордахский редкоземельно-золото-кварцевый узел

В этом узле отмечены те же важнейшие геологические факторы Улахан-Сисского и Солурского уз-

лов, которые влияют на наличие значимых запасов россыпного минерального сырья (золота, куларита, кварца и др.) в одно- и многопластовых россыпях, в том числе погребенных

Площадь узла 3325 км². На изученной части (2000 км²) разведаны и эксплуатировались золото-кварц-куларитовые россыпи бассейнов рек Суордах и Кыылаах. Остальная площадь (1325 км²) юго-восточного фланга — прогнозная (бассейн р. Ойуун-Юрэгэ).

Разведанные запасы россыпного золота 19 т, его среднее содержание 2,2 г/м³, K_3 0,0095 т/км² (см. таблицу). Объем попутной добычи кварцевого сырья может составить 1,73 млн м³: 1,21 млн м³ по категории P_2 (кварц стакерной гали) 0,52 млн м³ по категории P_1 (кварц вашгердной гали). Прогнозные ресурсы золота по категории P_3 оценены в 12,587 т, что увеличивает потенциальный объем попутного кварцевого сырья (кат. P_3) на 1,14 млн м³.

Площадь эрозионно-денудационного среза продуктивной толщи приконтактовой зоны пермских пород тарбаганнахской свиты (P_1 tr₁) и триасовых отложений (зоны аккумуляции куларита) 1828 км² (55 % территории всего узла). Значение коэффициента редкоземельности Солурского узла (42,271 т/км²) с большой долей вероятности можно распространить и на подсчет ресурсов куларита по категории P_3 на продуктивной площади Суордахского узла — 77271 т.

Для промышленного развития данного узла требуется наличие для комплексной разработки россыпей минерального сырья:

- запасы россыпного золота 3 т (кат. A+B+C₁) и ресурсы 12,58 т (кат. P₃);
 - ресурсы куларита 77271 т (кат. P₃);
- ресурсы кварцевого сырья 0,52 млн $м^3$ (кат. P_1), 1,21 млн $м^3$ (кат. P_2),,14 млн $м^3$ (кат. P_3).

IV. Джанкы-Куйга-Кюндюлюнгский золото-кварцевый узел

Площадь 5820 км². Изучен северный фланг (2670 км²), где разведаны и эксплуатировались золото-кварцевые россыпи Омега, Кюрюкэн, Арангасчан, Водомерная, Куйга, Сэллих-Юрэгэ и др. Юго-восточный фланг — бассейн р. Джанкы и левобережье верхнего течения р. Чондон) — прогнозная площадь (3150 км²)

Разведанные запасы золота 6,8 т, среднее его содержание 1,6 г/м³, $\rm K_3$ разведанной площади 0,0025 т/км² (см. таблицу). Объем попутной добычи кварцевого сырья может составить 0,85 млн м³: 0,6 млн м³ (кат. $\rm P_2$) — кварц стакерной гали, 0,25 млн м³ (кат. $\rm P_1$) — кварц вашгердной гали.

На территории узла нет современных водотоков, дренирующих продуктивные (редкоземельные) площади контакта пермских и триасовых отложений. Здесь не отмечены литолого-стратиграфические, палеогеографические и минерагенические факторы, определяющие наличие куларита, что ставит под сомнение накопление его промышленных концентраций.

Обращает на себя внимание приуроченность пород коренного плотика золото-кварцевых россыпей (Кюрюкэн, Водомерная, Куйга, Сэллих-Юрэгэ и др.) к «рою» даек лампрофиров, в северо-западном и субширотном направлении (в Лаптево-Селенняхской и Тенкиченской тектонических системах) прорывающих осадочные породы триаса и юры на всей территории рассматриваемого узла. Это позволяет сделать следующие выводы.

1. Можно связать с палеотектоникой и палеомагматизмом (тектоническим и магматическим минерагеническими факторами) золото-кварцевую (и, возможно, алмазную) россыпную минерализацию всей площади Кюндюлюнгского узла и тем самым распространить К, его разведанной площади (0,0025 т/км²) на прогнозную юго-восточную (3150 км²). О ее потенциальной золотоносности (и, вероятно, алмазоносности) свидетельствуют россыпеобразующие возможности конгломератов оксфордско-кимериджского возраста [9, с. 111] и келловейских слоев, с которыми связаны многочисленные находки алмазов, а также значительные концентрации их спутников [5, с. 7] на смежных территориях; эти конгломераты являются промежуточными коллекторами неоген-четвертичных россыпей золота и, возможно, алмазов.

Можно также надеяться на выявление в подвижном поясе краевых структур Восточно-Верхоянской складчатой зоны даек лейцитовых лампрофиров, структурно и генетически связанных с гипотетическим Шелонским массивом (под мезозоидами осадочного складчатого комплекса рассматриваемого узла) и представляющих собой первый (основной) признак при поисках алмазоносных лампроитов [7, с. 45].

Прогнозные ресурсы золота юго-восточного фланга Кюндюлюнгского узла составляют 7,875 т (кат. P_3), что на 0,98 млн м³ увеличивает ожидаемый объем попутного кварцевого сырья той же категории.

Для промышленного развития узла на современном этапе необходимо наличие следующих видов сырья:

- запасы россыпного золота 1 т (кат. A+B+C₁), ресурсы 7,87 т (кат. P₃);
- ресурсы кварца 0,25 млн м³ (кат. P_1), 0,60 млн м³ (кат. P_2), 0,98 млн м³ (кат. P_3).

Перспективы россыпной алмазоносности Куларского ГПР

В пользу потенциальной алмазоносности Куларского ГПР свидетельствуют следующие региональные поисковые (минерагенические) признаки:

1. Тектонические и магматические — принадлежность территории рассматриваемых узлов к подвижным краевым структурам западной части Верхояно-Колымской складчатой области, в непосредственной близости от восточной окраины

Сибирской платформы, где выявлено присутствие разнородных россыпных проявлений алмаза и его спутников [5, с. 6, 8].

- 2. Эпикратонный тип тектонического устройства наличие Хромского и Шелонского массивов под мезозоидами Куларского антиклинория с его проявлениями траппового (долеритового) [6, с. 34] магматизма (магматический минерагенический фактор). «О проявлении раннетриасового базальтоидного вулканизма в областях питания свидетельствует обогащение песчаников кыллахской свиты T_1 kh медью, никелем, титаном и ванадием, обладающих сильными корреляционными связями» [6, с. 43].
- 3. Литолого-стратиграфические и палеогеографические минерагенические факторы при определении поисковой ценности триасовых и юрских толщ Куларского ГПР. Это конгломераты всех уровней, и прежде всего волжские базальные [5, с. 7], перспективные для концентрации алмазов и их спутников, в продуктивных келловейских слоях. Все это подтверждает, что россыпи могут быть сформированы за счет размыва коренных источников (или вновь возникших) в батское время [5, с. 7].
- 4. Минералогический поисковый фактор (по аналогии с алмазоносными месторождениями Тимано-Уральского региона). Это зависимость концентраций куларита от алмаза в составе тяжелой фракции шлиха. Иными словами, куларит является как региональным, гидродинамическим спутником алмаза, обладающим близкой ему гидравлической крупностью, так и вторичным минералом-индикатором (минералом – спутником алмаза) [11, с. 4]. Значит, I–III редкоземельно-золото-кварцевые узлы Куларского ГПР могут считаться перспективными на алмазную минерализацию; наиболее значимым объектом для добычи комплексного полиминерального алмаз-золото-редкоземельно-редкометалльно-кварцевого сырья является Солурский (II) узел с максимальными запасами и ресурсами куларита (см. таблицу), а перспективы IV узла необходимо увязывать с поисками алмазоносных лампроитов и конгломератов всех уровней.

Для подтверждения алмазного потенциала на первом этапе поисковых работ необходимо:

- максимально снизить влияние «профессионального кретинизма» при анализе геологических рисков для различных этапов и стадий геолого-разведочного процесса и их минимизации [1, с. 67–68];
- провести рекогносцировочные поисковые работы по оценке площадной алмазоносности путем опробования техногенных месторождений, и в первую очередь скоплений золотосодержащих шлихов методом отбора шлиховых проб весом не менее 40 кг из материала хвостов промывки мест стоянок шлихообогатительных установок, а также и из так называемых бойных ям мест сброса воды со шлюзов стоянок гидровашгердных промприборов;
- помнить, что «успех алмазопоисковых программ... зависит не только от качества полевых ра-

бот, но и от эффективности работы минералогической лаборатории» [7, с. 19].

Выводы

Масштабный региональный прогноз значимых запасов (ресурсов) россыпного минерального сырья (золота, куларита, кварца и пр.), основан на результатах геолого-проспекторской сравнительной методики «ищи руду около руды», генетического анализа строения россыпей и корреляционного анализа связей основных геологических (поисковых) критериев разведанных площадей с прогнозируемыми.

Это позволяет предложить Куларский ГПР с его реально ожидаемой алмазоносностью в качестве первоочередного промышленного объекта для возрождения былого экономического потенциала Булунского и Усть-Янского улусов Заполярной Якутии, но уже в качестве источника комплексного полиминерального алмаз-золото-редкоземельно-редкометалльно-кварцевого сырья.

Автор совершенно согласен с мнением ученых ОАО «Иргиредмет»: «По нашим расчетам, перспективы россыпной золотодобычи в России огромные. Если повысить достоверность разведки, использовать современные технологии горных работ и обогащения, тогда на россыпном золоте можно получать высокую прибыль» [8, с. 42].

СПИСОК ЛИТЕРАТУРЫ

- 1. **Антипин И. Ин., Антипин И. И.** Состояние и основные проблемы алмазопоисковых работ на Сибирской платформе // Геология и минеральносырьевые ресурсы Сибири. 2017. № 4. С. 62–70.
- 2. **Билибин Ю. А.** Основы геологии россыпей. М.: Изд-во АН СССР, 1955. 472 с.
- 3. **Виноградова О. В., Хмелева Н. В.** Русловые процессы и формирование аллювиальных россыпей золота. М.: МГУ, 2009. 171 с.
- 4. **Воропаев В. И.** Актуальные проблемы недропользования в области твердых полезных ископаемых // Недропользование XXI век. Национальная ассоциация по экспертизе недр. 2011. № 5. С. 10–14.
- 5. **Вопросы** алмазоносности западной части Верхояно-Колымской складчатой области / В. А. Амузинский, А. С. Урзов, В. М. Мишнин, Р. О. Галабала // Отечественная геология. 2000. № 5. С. 6—8.
- 6. **Государственная** геологическая карта России м-ба 1:200 000 (второе издание). Яно-Индигирская серия. Лист R-53-IX, X (Власово). Объяснительная записка / ред. Л. А. Мусалитин. Батагай, 2003. 106 с.
- 7. **Джейкс А., Луис Дж., Смит К.** Кимберлиты и лампроиты Западной Австралии: пер. с англ. М.: Мир, 1989. С. 19,45.
- 8. **Кавчик Б. К., Пятаков В. Г.** О повышении эффективности россыпной золотодобычи // Ми-

неральные ресурсы России. Экономика и управление. -2005. -№ 3. - C. 34 - 42.

- 9. **Крашенинин В. Ф.** Геологическое и технико-экономическое обоснование кондиций месторождений полезных ископаемых Северной Якутии в части рационального использования и охраны недр // Геология и минерально-сырьевые ресурсы Сибири. 2017. № 4. С. 110 114.
- 10. **Костов И.** Минералогия: Пер. с английского. М.: Мир, 1968. 584 с.
- 11. **Макеев Б. А.** Минеральные ассоциации и индикаторы рудоносности Пижемского титанового и Ичетъюского алмазоносного месторождений Среднего Тимана: автореф. дис... к. г.-м. н. Сыктывкар; Казань, 2012. 24 с.
- 12. Сергеенко А. И., Прокопьев А. В. Россыпная куларитоносность Хараулахского антиклинория (Северное Верхоянье) / Материалы Всерос. научпракт. конф. «Геология и минерально-сырьевые ресурсы северо-востока России». Якутск, 2015. С. 435—438.
- 13. **Серых Н. М., Фролов А. А.** Из истории развития отраслевого направления работ на пьезооптическое, кварцевое и камнесамоцветное сырье // Разведка и охрана недр. 2007. № 10. С. 2—9.

REFERENCES

- 1. Antipin I. In., Antipin I.I. [State and major problems of exploration for diamonds in the Siberian Platform]. *Geologiya i mineral'no-syr'evye resursy Sibiri Geology and mineral resources of Siberia*, 2017, no. 4, pp. 62–70. (In Russ.).
- 2. Bilibin Yu.A. *Osnovy geologii rossypey* [Fundamentals of placer geology]. Moscow, AS USSR Publ., 1955. 472 c. (In Russ.).
- 3. Vinogradova O.V., Khmeleva N.V. Ruslovye protsessy i formirovanie allyuvial'nykh rossypey zolota [Fluvial processes and the formation of alluvial gold placers]. Moscow, University Publ., 2009. 171 p. (In Russ.).
- 4. Voropaev V.I. [Important issues of subsoil using in the sphere of solid minerals development]. Nedropol'zovanie XXI vek. Natsional'naya assotsiatsiya po ekspertize nedr, 2011, no. 5, pp. 10–14. (In Russ.).
- 5. Amuzinskiy V.A., Urzov A.S., Mishnin V.M., Galabala R.O. [Problems of diamond content in the west-

- ern part of the Verkhoyansk-Kolyma folded region]. *Otechestvennaya geologiya*, 2000, no. 5, pp. 6–8. (In Russ.).
- 6. Fedyanin A.N., Solovyev M.N. Gosudarstvennaya geologicheskaya karta Rossii m-ba 1:200000 (vtoroe izdanie). Yano-Indigirskaya seriya. List R-53-IX, X (Vlasovo). Ob"yasnitel'naya zapiska [State geological map of Russia at a scale of 1: 200000 (second edition). Yana-Indigirka series. Sheet R-53-IX, X (Vlasovo). Explanatory note]. Batagai, Yangeologia Publ., 2003. 106 p. (In Russ.).
- 7. Jakes A., Louis J., Smith K. Kimberlites and lamproites of Western Australia. *Geol. Surv. West. Aust. Bull.*, 1986, no. 132. 268 p.
- 8. Kavchik B.K., Pyatakov V.G. [On improving the efficiency of placer gold mining]. *Mineral'nye resursy Rossii. Ekonomika i upravlenie Mineral resources of Russia. Economics and Management*, 2005, no. 3, pp. 34–42. (In Russ.).
- 9. Krasheninin V.F. [Geological and feasibility study of the conditions of mineral deposits of Northern Yakutia in terms of the rational use and protection of mineral resources]. *Geologiya i mineral'no-syr'evye resursy Sibiri Geology and mineral resources of Siberia*, 2017, no. 4, pp. 110–114. (In Russ.).
 - 10. Kostov I. Mineralogy. Edinburgh, 1968. 587 p.
- 11. Makeev B.A. Mineral'nye assotsiatsii i indikatory rudonosnosti Pizhemskogo titanovogo i Ichet"yuskogo almazonosnogo mestorozhdeniy Srednego Timmana. Avtoreferat diss. ... k. g.-m.n. [Mineral associations and indicators of ore content of Pizhemsky titanium and Ichetyusky diamondiferous deposits of Middle Timan. Author's abstract of PhD thesis]. Syktyvkar, Kazan, 2012. 24 p. (In Russ.).
- 12. Sergeenko A.I., Prokopyev A.V. [Alluvial kularite content of the Kharaulakh anticlinorium (Northern Verkhoyansk Region)]. *Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii "Geologiya i mineral'no-syr'evye resursy severo-vostoka Rossii"* [Materials of the All-Russian scientific-practical conference "Geology and mineral resources of the north-east of Russia"]. Yakutsk, 2015, pp. 435–438. (In Russ.).
- 14. Serykh N. M., Frolov A.A. [From the history of the industry in the areas of work piezooptic, quartz and gemstone raw materials]. *Razvedka i okhrana nedr*, 2007, no. 10, pp. 2–9.

© В.Ф. Крашенинин, 2019