УДК 550.834.42+550.34

К ИЗУЧЕНИЮ СВЯЗИ РАЗМЕЩЕНИЯ РУДНЫХ УЗЛОВ МИНЕРАГЕНИЧЕСКИХ ПРОВИНЦИЙ ПРИАМУРЬЯ С ОСОБЕННОСТЯМИ ГЛУБИННОГО СТРОЕНИЯ ВЕРХНЕЙ КОРЫ НА ВОСТОЧНО-СТАНОВОМ ФРАГМЕНТЕ ОПОРНОГО ГЕОЛОГО-ГЕОФИЗИЧЕСКОГО ПРОФИЛЯ 8-ДВ

В. М. Соловьев¹, А. С. Сальников², В. С. Селезнев³, Т. В. Кашубина⁴, Н. А. Галёва¹

¹Алтае-Саянский филиал ФИЦ «Единая геофизическая служба РАН», Новосибирск, Россия; ²Сибирский НИИ геологии, геофизики и минерального сырья, Новосибирск, Россия; ³Сейсмологический филиал «Единая геофизическая служба РАН», Новосибирск, Россия; ⁴Всероссийский научноисследовательский геологический институт им. А. П. Карпинского, Санкт-Петербург, Россия

Представлены результаты глубинных сейсмических исследований по данным Р- и S-волн на Восточно-Становом фрагменте опорного 700-километрового геофизического профиля 8-ДВ. Построены глубинные сейсмические разрезы верхней коры (до глубин 20 км) с распределением скоростей продольных и поперечных волн. Скорости P-волн в верхней части разреза изменяются от 4–5 км/с на Верхнезейской и Амуро-Зейской равнинах до 5,5–6,0 км/с в пределах горных хребтов и плоскогорий. Скорости S-волн в верхней части разреза составляют 3,0–3,2 км/с; пониженные значения (2,5–2,6 км/с) отмечаются на участке Верхнезейской равнины. Установлено неоднородное строение верхней части земной коры до глубин 15–20 км по соотношению скоростей P- и S-волн и коэффициенту Пуассона. В створе профиля проведен анализ связи выявленных аномалий с размещением крупных минерагенических зон Приамурья. Подтверждены установленные ранее на профилях 2-ДВ, 3-ДВ и 1-СБ корреляции по приуроченности ряда рудных месторождений к зонам пониженных отношений скоростей P- и S-волн и коэффициента Пуассона в верхней части земной коры. Обоснована связь выделенных поверхностных сейсмических аномалий с глубинными корнями (на глубинах 5–20 км), которые можно считать рудоподводящими.

Ключевые слова: профиль ГСЗ, продольные и поперечные волны, скорости Р- и S-волн и их отношения, глубинный сейсмический разрез, земная кора, минерагеническая зона.

TO STUDY THE DISTRIBUTION OF ORE CLUSTERS OF THE AMUR RIVER REGION MINEROGENIC PROVINCES WITH THE DEEP STRUCTURE FEATURES OF THE UPPER CRUST ON THE EAST-STANOVOY FRAGMENT OF THE REFERENCE GEOLOGICAL AND GEOPHYSICAL PROFILE 8-DV

V. M. Solovyev¹, A. S. Salnikov², V. S. Seleznev³, T. V. Kashubina⁴, N. A. Galyova¹

¹Altai-Sayan Branch of Federal Research Center United Geophysical Survey RAS, Novosibirsk, Russia; ²Siberian Research Institute of Geology, Geophysics and Mineral Resources, Novosibirsk, Russia; ³Seismological Branch of United Geophysical Survey RAS, Novosibirsk, Russia; ⁴Russian Geological Research Institute, Saint Petersburg, Russia

The results of deep seismic studies based on P- and S-wave data on the East-Stanov fragment of the reference 700-kilometer geophysical profile 8-DV are presented. Deep seismic sections of the upper crust (up to depths of 20 km) with velocity distribution of longitudinal and transverse waves are constructed. The velocity of P-waves in the upper part of the section varies from 4-5 km/s within the Upper Zeya and Amur-Zeya plains to 5.5-6.0 km/s within mountain ranges and plateaus. According to S-waves in the upper part of the section, the velocity values are generally 3.0-3.2 km/s; reduced velocity values of 2.5-2.6 km/s are noted in the Upper Zeya Plain section. The inhomogeneous structure of the upper part of the Earth's crust to depths of 15-20 km has been established by the ratio of the velocities of P- and S-waves and the Poisson's ratio. In the section of large mineragenic zones of the Amur region. The correlations previously identified on the profiles 2-DV, 3-DV and 1-SB on the occurrence of a number of ore deposits in the zones of reduced ratios of P- and S-wave velocities and Poisson's ratio in the upper part of the Earth's crust have been confirmed. The connection of the identified surface seismic anomalies with deep roots (at depths of 5-20 km), which can be considered ore-bearing, is substantiated.

Keywords: GSZ profile, longitudinal and transverse waves, P- and S-wave velocities and their ratios, deep seismic section, Earth's crust, minerogenic zone.

DOI 10.20403/2078-0575-2022-3-72-84

Восток России обладает высоким ресурсным потенциалом многих полезных ископаемых, и прежде всего золота. Несмотря на значительное количество трудов российских ученых и составленных прогнозно-минерагенических карт, существует много актуальных не до конца изученных вопросов о рудоконтролирующих структурах в земной коре и мантии, которые отвечают за образование рудных полезных ископаемых обширного региона. В решении данной проблемы значительная роль отводится результатам комплексной интерпретации геологогеофизических материалов на опорных геологогеофизических профилях (2-ДВ, 3-ДВ, 1-СБ и 8-ДВ) с выяснением закономерностей распределения месторождений полезных ископаемых в пространстве и во времени в связи с эволюцией элементов литосферы. По работам на опорных профилях предполагается выработать предварительные глубинные прогнозно-поисковые критерии для выделения геологических структур, перспективных на обнаружение стратегических, благородных, остродефицитных и высоколиквидных видов минерального сырья на основе обработки новых и анализа ретроспективных геолого-геофизических материалов по опорному профилю.

В работах [7, 11] по результатам глубинных сейсмических исследований на опорных геологогеофизических профилях 2-ДВ, 3-ДВ и 1-СБ на востоке России проанализированы связи скоростных аномалий продольных и поперечных волн с известными и потенциальными рудопроявлениями. Принципиальная особенность совместного использования обоих типов волн в случае изотропных глубинных объектов заключается в том, что в результате получается не один, как обычно, а два сейсмических образа изучаемой среды, найденных по соответствующим волнам разной поляризации. Эти исходные образы могут быть трансформиро-

Рис. 1. Схемы тектонического по [3] (а) и минерагенического районирования по [16, 17] (б) на Восточно-Становом фрагменте профиля 8-ДВ (минерагенические провинции: АС – Алдано-Становая, МО – Монголо-Охотская, БА – Байкальская, ХБ – Ханкай-Буреинская)

ваны в ряд вторичных на основе известных функциональных и корреляционных связей скоростей Р- и S-волн с искомыми параметрами среды [1, 4, 5]. Необходимо отметить, что при использовании только Р-волн функциональные параметры не могут быть найдены даже для изотропной модели, а корреляционные связи скорости V_в с другими параметрами среды, как правило, менее тесные, чем для пары значений V_p и V_s. По соотношению времен регистрации Р- и S-волн (t_s/t_n) на малых удалениях, отношению скоростей продольных и поперечных волн (V_p/V_s) и коэффициенту Пуассона (σ) в верхней части разреза на профилях 2-ДВ, 3-ДВ и 1-СБ был выделен ряд явно выраженных участков с пониженными значениями t_s/t_p, V_p/V_s (<1,70-1,73) и о<0,25. Отмечено, что практически все определенные таким способом участки совпали с известными зонами рудопроявлений [7, 11]. Прежде всего это блоки земной коры, в пределах которых размещены золото-серебряные месторождения. Пониженные отношения V_D/V_s и о характерны для гранитоидов (кислых), с которыми чаще всего связаны золотоносные кварцевые жилы.

№ 3(51) ♦ 2022

Далее приведен подробный анализ связи скоростных аномалий продольных и поперечных волн (и вторичных параметров) с известными и потенциальными рудопроявлениями на Восточно-Становом фрагменте профиля 8-ДВ (рис. 1), пересекающем крупные минерагенические провинции Приамурья.

Исходная информация

Профиль 8-ДВ (Восточно-Становой фрагмент) – один из опорных геолого-геофизических профилей, выполняемых Федеральным агентством по недропользованию на территории России [3]; вдоль него выполнен комплекс геофизических исследований, включающий методы ОГТ, ГСЗ, МТЗ.

Геологическое строение

Профиль пересекает несколько структурнотектонических элементов земной коры (Восточно-Становую складчато-глыбовую (блоковую) систему (СС) Селенгино-Становой складчатой области (СО), Амуро-Охотскую складчатую систему (СС), Буреинский массив Амурской складчатой области), различающихся особенностями геологического строения: набором геологических формаций, степенью метаморфизма и дислоцированности отложений [3, 13, 19] (см. рис. 1, а).

В пределах Восточно-Становой системы с запада на восток выделяются Ларбинский, Дамбукинский, Сивакано-Токский выступы раннеархейского комплекса основания. Контакты выступов с более молодыми образованиями тектонические. Шовные зоны и прогибы позднего архея – раннего протерозоя в системе также относятся к классу при- и межразломных структур (Джелтулакская). В Становой области выделяются два комплекса метаморфических пород – ранне- и позднеархейский [2, 20, 21].

Геология и минерально-сырьевые ресурсы Сибири – 2022, no. 3 – Geology and mineral resources of Siberia

интенсивной гранитизации и мигматизации и распространены фрагментарно. После позднеархейской складчатости Становая область развивалась как структура сводово-глыбового типа, испытывая перманентно поднятие, размыв и внедрение многочисленных интрузий различного возраста и состава [13, 19]. Для области характерно наличие огромных массивов основных пород, тяготеющих к зонам Станового, Каларского и других глубинных разломов. В неотектонический этап развития Становая область в целом испытывала общее воздымание, размыв и вынос обломочного материала за пределы региона, в связи с чем кайнозойские отложения на преобладающей части ее территории весьма маломощны и имеют преимущественно крупнообломочный состав [13, 19].

Архейские образования повсеместно подверглись

Монголо-Охотская СС отличается исключительной сложностью строения. Наиболее узкая ее часть, зажатая между Восточно-Становой СС, Буреинским и Аргуньским массивами Амурской СО, представляет собой серию линейных горстантиклинориев и грабен-синклинориев (Янкано-Джагдинская зона), осложненных многочисленными надвигами и взбросами. Антиклинории сложены породами позднепротерозойского и раннепалеозойского возраста, синклинории – среднепозднепалеозойскими (девон – пермь) и мезозойскими образованиями [13, 19].

Составными частями Буреинского массива являются Туранский, Мамынский и Гонжинский выступы, разделенные разновозрастными прогибами и впадинами (Депский, Буреинский), которые вместе с Аргуньским массивом в раннем протерозое составляли единую структуру - северный выступ Китайско-Корейского щита. Фундамент Буреинского массива сложен архейскими и раннепротерозойскими метаморфическими образованиями, небольшие поля которых сохранились в виде ксенолитов и останцов кровли среди обширных массивов разновозрастных гранитоидов. Буреинский массив в палеозое был ареной интенсивного гранитоидного магматизма и блоковых дислокаций, продолжавшихся и в мезозое, чему сопутствовали образование наложенных впадин и наземный вулканизм. В восточной части Туранского выступа образовался пригеосинклинальный Буреинский прогиб, окаймляющий Буреинский массив с востока и севера; на западе – Верхнеамурский и Амуро-Зейский прогибы [13, 19].

В краевых частях Амуро-Охотской складчатой системы, отделяющей Селенгино-Становую и Амурскую СО, картируются Джелтулакский, Северо-Тукурингрский и Южно-Тукурингрский разломы глубинного заложения [20, 21]. Джелтулакский и Северо-Тукурингрский разломы маркируют область сочленения Амуро-Охотской СС и Селенгино-Становой СО; границу юго-восточного ограничения Амуро-Охотской СС и сочленения с крупным Буреинским массивом Амурской СО маркирует Южно-Тукурингрский разлом.

Полевые исследования и волновое поле

Полевые исследования ГСЗ на профиле 8-ДВ выполнялись по методике точечных зондирований [4, 10] в летний период 2016 г. на двух расстановках: Ларба – Бомнак (1) и Верхнезейск – Ульма (2) протяженностью 390 и 500 км соответственно (см. рис. 1). Были реализованы детальные системы наблюдений с расстоянием между источниками возбуждения (взрывы в водоемах с массой 3–5 т гранулотола) в среднем 20–40 км. Всего на 700-километровом сводном профиле 8-ДВ было отработано 29 источников возбуждения.

Регистрация на профиле осуществлялась в пунктах регистрации, размещенных в среднем через 5–8 км с дискретными группами вертикальных приборов Sercel SG-5 и через 18–20 км – с трехкомпонентными приборами GS-One. В качестве регистрирующей аппаратуры использовалось около 200 комплектов 4-канальной 24-разрядной аппаратуры «РОСА-А».

По результатам полевых сейсмических наблюдений получено 29 годографов с записями рефрагированных Р- и S-волн от границ в земной коре, преломленных и отраженных Р- и S-волн от поверхности Мохоровичича на удалениях 0–300 км [10]. Примеры волнового поля рефрагированных Р- и S-волн на удалениях 0–100 км от источников, освещающих верхнюю кору Восточно-Станового фрагмента профиля 8-ДВ, представлены на рис. 2.

В пределах расстановок 1 и 2 скорость Р-волн в первых вступлениях на удалениях 0–15 км в целом изменяется от 2,7–2,8 до 5,5–5,7 км/с. Наиболее высокими значениями характеризуются участки высокогорных хребтов и плоскогорий. На расстановке 1 это участки X = 20–70 км, X = 220–320 км; на расстановке 2 – X = 320–345 км, X = 445–545 км и X = 695–745 км (см. рис. 1, а). Наиболее низкие значения скорости Р-волн (2,7–2,8 км/с) определены на расстановке 2 в зоне Верхнезейской равнины (X = 365–435 км); пониженные (4,4–5,0 км/с) отмечены также в юго-восточной части расстановки 2 (X = 595–645 км) (см. рис. 1, а).

На базах свыше 15 км и до удалений 100—150 км скорость продольных волн по основной массе годографов с обеих расстановок возрастает незначительно (примерно до 6,0—6,2 км/с, редко до 6,3 км/с). На ряде годографов расстановки 2 в центральной части в интервале 395—425 км значения кажущейся скорости увеличиваются до 6,4—6,6 км/с. В пределах данной расстановки с ряда источников возбуждения на участке X = 395—445 км отмечены изломы годографов на низкие скорости волн в первых вступлениях (от 2,7—2,8 км/с на самых малых удалениях до 5,0—5,4 км/с на удалениях до 130—180 км), что обусловлено низкоскоростными неоднородностями в верхней части Верхнезейской равнины.

Рис. 2. Примеры волнового поля Р- и S-волн на Восточно-Становом фрагменте профиля 8-ДВ на вертикальных (а) и трехкомпонентных приборах после поляризационной фильтрации (б)

В последующих частях записей поля продольных волн на вертикальных приборах (без частотной фильтрации) менее уверенно выделяется поле поперечных аналогов; применение низкочастотной фильтрации, а также трехкомпонентных данных с поляризационной фильтрацией (см. рис. 2) улучшает выделение поперечных волн. Трехкомпонентные записи позволяют изучать вопросы анизотропности среды,

Рис. 3. Выделение поперечных волн на профиле 8-ДВ на трехкомпонентных записях (а) и вертикальных приборах (б)

а также проводить заверку корреляции поперечных волн на вертикальных приборах. Как видно из рис. 3, с пункта возбуждения 203 в точке 209 расстановки 2 на вертикальном приборе на временах 5,1 с (максимальная фаза верхней трассы, удаление 15,2 км) выделяется интенсивная низкочастотная волна с пониженной кажущейся скоростью (по сравнению с продольной волной в первых вступлениях), соответствующая волне SV на трехкомпонентной пересчитанной записи примерно на том же удалении (≈15,5 км).

Наиболее представительный материал получен по данным преломленных (рефрагированных) поперечных волн от границ в земной коре на удалениях 0–100 км (см. рис. 2). По сравнению с продольными S-волны имеют повышенные в 1,5–2 раза времена регистрации, пониженные видимые частоты и кажущиеся скорости на сейсмограммах. В целом качество записей S-волн на участке 2 (Верхнезейск – Ульма) хуже, по сравнению с сейсмическим материалом на участке 1 (Ларба – Бомнак), что связано с мощной низкоскоростной толщей в районе Верхнезейской равнины (см. рис. 1, а). Так, в центральной ее части отмечается полное отсутствие записей S-волн даже на небольшом удалении (≈5–6 км).

Как и для продольных волн, по годографам S-волн отмечается увеличение кажущихся скоростей от 2,5–3,0 км/с на малых удалениях (пониженных главным образом в районе Верхнезейской равнины) до 3,5–3,7 км/с на удалениях свыше 100 км. На ряде годографов на больших базах в пределах западной части расстановки 1 и юго-восточной части расстановки 2 отмечено увеличение кажущихся скоростей поперечных волн до 3,8–4,0 км/с.

Особенности сейсмического строения верхней коры по данным разнополяризованных Р- и S-волн на Восточно-Становом фрагменте профиля 8-ДВ

Сводные глубинные сейсмические разрезы верхней коры по данным продольных и попереч-

ных волн на расстановках 1 и 2 Восточно-Станового фрагмента профиля 8-ДВ приведены на рис. 4. Способы интерпретации и построений разрезов детально освещены в работах [4, 7, 10]. Интерпретация продольных и поперечных рефрагированных волн проводилась способом сейсмической томографии на временных задержках рефрагированных волн [4, 7, 10]. В качестве интерпретационной модели принимается непрерывная двухмерно-неоднородная модель среды с нарастанием скорости с глубиной, допускающая наличие прерывистых волноводных включений. По годографам рефрагированных Ри S-волн на профиле 8-ДВ были рассчитаны поля времен и томографические разрезы в изолиниях скорости (см. рис. 4).

Скорость Р-волн в верхней части разреза изменяется от 4-5 км/с на Верхнезейской (Х = 340-430 км) и Амуро-Зейской (X = 560-680 км) равнинах до 5,5-6,0 км/с в западной части Станового хребта (X = 0–350 км) и горного хребта Джагды (X = 480– 520 км) [10]; мощность осадочных отложений в центральной части Верхнезейской равнины достигает 5 км, в Амуро-Зейской – 2,5–3 км (см. рис. 4, а). На глубинах 10-20 км в створе профиля выделяются линзы высоко- (6,4-7,0 км/с) и низкоскоростных (6,25-6,35 км/с) пород. Наиболее высокие значения скорости (6,6-6,7 км/с и даже до 7,0 км/с) отмечаются под Верхнезейской, Амуро-Зейской равнинами и в пределах горного хребта Джагды (Х = 480-540 км, область сочленения Амуро-Охотской СС и Буреинского массива) [10]. Пониженные значения скорости Р-волн зафиксированы в югозападной части Станового хребта (участки профиля X = 160–180 км и X = 230–250 км) на глубинах 15–20 км, а также под центральной (X = 410–430 км) и юго-восточной (Х = 465-480 км) частями Верхнезейской равнины на глубинах 15-20 и 7-15 км соответственно (см. рис. 4, а) [10].

В верхней части разреза значения скорости S-волн составляют в целом 3,0–3,2 км/с; понижен-

Рис. 4. Глубинные сейсмические разрезы верхней коры по данным Р- (а) и S-волн (б) на Восточно-Становом фрагменте профиля 8-ДВ

1 – изолинии скорости, км/с; 2 – источники возбуждения на расстановках 1 (ПВ101–ПВ111) и 2 (ПВ205–ПВ216)

ные отмечаются на участке Верхнезейской равнины (2,5–2,6 км/с) и на Амуро-Зейской (2,9–3,0 км/с) (см. рис. 4, б).

На глубинах 5–20 км в пределах разреза по данным поперечных волн выделяется ряд участков с пониженными и повышенными значениями скорости до 3,4—3,5 и 3,75—3,8 км/с соответственно. Первые выделяются на глубинах 6—12 км в юго-западной части Станового хребта (участки профиля X = 100—120 км, X = 170—200 км и X = 340—355 км) и в центральной части Амуро-Зейской равнины (X = 540—550 км) (см. рис. 4, б); вторые — на глубиNº 3(51) ♦ 2022

Рис. 5. Распределение отношений скоростей V_p/V_s (а) и коэффициента Пуассона (σ) (б) на Восточно-Становом фрагменте профиля 8-ДВ

1 – изолинии значений параметров V₀/V_s и σ; 2 – источники возбуждения

нах 8–20 км на участках профиля X = 125–175 км, X = 375–400 км в северо-западной части Верхнезейской равнины и на участке X = 580–620 км Амуро-Зейской (см. рис. 4, б).

В верхней коре профиля явно выделяется ряд участков с пониженными отношениями скоростей Р- и S-волн (V_p/V_s) – 1,65–1,73 (рис. 5, а). В самой верхней части разреза северо-западной половины профиля это участки X = 20–50 км, X = 70–90 км, X = 230–255 км, X = 290–305 км, X = 360–425 км; в юго-восточной половине профиля – X = 440– 470 км, X = 570–595 км, X = 618–635 км, X = 650– 680 км. Более ярко протяженная зона пониженных отношений V_p/V_s прослеживается на глубинах 3–6 км в северо-западной части Восточно-Станового фрагмента профиля; на больших глубинах здесь выделяется несколько зон с $V_p/V_s = 1,65-1,70$: узкая столбообразная зона на глубинах 6–20 км на участке X = 125–150 км и зоны на глубинах 14–20 км на участке X = 150–170 км и X = 220–270 км. В юговосточной части профиля на больших глубинах в верхней коре оконтуривается ряд зон с такими же значениями: на участках X = 370–400 км, X = 445– 480 км и X = 545–630 км на глубинах 6–14 км и на участках X = 395–405 км, X = 430–460 км на глубинах 12–20 км.

Необходимо отметить, что большинство выделенных зон с пониженными отношениями V_p/V_s в верхней коре связаны между собой. Так, в северо-западной части Восточно-Станового фрагмента профиля на участке X = 125–150 км начинающаяся с глубины 20 км такая зона поднимается вверх до глубины 6 км и протягивается в западном и восточном направлениях; другая подобная характерная линза в центральной части профиля протягивается наклонно с глубины 20 км на участке X = 430–440 км до 8 км на участке X = 445–480 км и разветвляется на две полосы: вертикальную с выходом на поверхность (X = 435–455 км) и наклонную в юго-восточном направлении (см. рис. 5, а).

Распределение значений коэффициента Пуассона (σ) (см. рис. 5, 6) аналогично таковому V_p/V_s. Менее контрастные зоны отмечаются в верхней части разреза, более контрастные — на глубинах 6–20 км в целом в пределах Восточно-Станового фрагмента профиля 8-ДВ (см. рис. 5, 6), особенно на участке X = 470–525 км в верхней коре на глубине 7–20 км, где значения σ изменяются от 0,21 до 0,30, что весьма существенно для кристаллических пород.

Корреляция особенностей сейсмического строения и размещения рудных узлов по материалам ГСЗ на Восточно-Становом фрагменте профиля 8-ДВ

Восточно-Становой фрагмент профиля 8-ДВ находится в пределах крупных тектонических структур Центрально-Азиатского складчатого пояса - Селенгино-Становой СО и Амурской СС [3]. Согласно [9], «Селенгино-Становой супертеррейн юго-восточной окраины Северо-Азиатского кратона является одной из ключевых структур восточной окраины Азии. Основу его геологического строения составляют традиционно выделяемые условно ранне- и позднедокембрийские комплексы, а также многочисленные интрузивные и вулканоплутонические ассоциации палеозоя и мезозоя». К таким комплексам и блокам в западной части профиля 8-ДВ (Х = 0-340 км) в пределах Восточно-Становой СС Селенгино-Становой СО по геологическим данным относят Ларбинский (0-40 км), Иликанский (130-175 км), Улаханский (250-330 км) метаморфические блоки фундамента позднеархейского возраста, а также Тындинский (40-130 км) и Унюхинский (175-250 км) блоки интрузий юрского возраста

[2, 20, 21]. В позднеархейских и юрских гранитах и гранодиоритах этих комплексов сосредоточено большое количество рудных золото-серебряных и железистых месторождений. В Приамурье, по разным оценкам, находится 80 рудно-россыпных узлов с общим потенциалом в 3–5 тыс. т золота [8]. При этом отмечается, что россыпной потенциал провинции практически отработан, и основное внимание в настоящее время должно уделяться эксплуатации известных рудных месторождений, выявлению и разведке новых [8]. Кислые гранитоиды и гранодиориты, в которых размещено большинство золоторудных месторождений, как отмечалось ранее, за счет повышенного содержания кремнезема (SiO₂) в сейсмических данных создают аномалии упругих (V_{p} , V_{s}) и вторичных (V_{p}/V_{s} , σ) параметров. Это создает предпосылки для оконтуривания крупных магматических объектов по аномалиям сейсмических данных на разных участках.

По соотношению скоростей продольных и поперечных волн и коэффициента Пуассона в верхней части разреза на профиле выделены отчетливо выраженные участки с пониженными V_n/V_s (<1,70–1,73) и σ<0,25. К наиболее крупным таким объектам на профиле (и, принимая во внимание распределение рудных месторождений на прогнозно-минерагенических картах России, по всей видимости, на всей площади [15–17]) следует отнести участки пониженных аномалий V_D/V_s и σ в западной (начальной) части профиля (Х = 20-90 км), а также в центральной (X = 360-470 км) и юго-восточной (X = 618–680 км) частях Восточно-Станового фрагмента. Общее свойство выделенных участков – наличие «глубинных корней» выделенных аномалий, прослеженных на глубинах от 4 до 20 км, которые могут считаться рудоподводящими. Это согласуется с мнением исследователей, утверждающих, что «при внешней несхожести отдельных месторождений каждый тип характеризуется общностью генезиса золотого оруденения, относительно сходным минеральным составом и геохимией руд» [14]. Рудоподводящими структурами на рассмотренной территории являются зоны региональных разрывных нарушений, и прежде всего главных разломов - Южно-Тукурингрского, Северо-Тукурингрского и Джелтулакского, служащих каркасом зоны мезозойской тектоно-магматической коллизии Алдано-Станового, Амурского и Монголо-Охотского мегаблоков [9, 18, 20, 21].

Кратко охарактеризуем данные крупные участки с «аномальными» пониженными значениями V_n/V_s и σ.

Участок 1 («западный блок») (X = 20–90 км). Аномалии пониженных отношений V_p/V_s и σ в западной и восточной частях блока начинаются от поверхности и протягиваются в восточном направлении (почти до X = 100–120 км) на глубины 4–6 км, а ниже соединяются с крупной вертикальной зоной значительно пониженных отношений V_p/V_s и σ , рас-

Минерагения, рудные и нерудные месторождения

пространяющейся до глубины 20 км (см. рис. 5). В минерагеническом плане аномалия выделяется в западной части Южно-Становой минерагенической зоны Алдано-Становой провинции (рис. 6, также см. рис. 1, б) [13, 15, 16].

Вмещающие породы Ларбинского и Тындинского блоков Селенгино-Становой складчатой области представлены позднеархейскими гранитами и интрузиями юрских гранодиоритов, что согласуется со значениями скоростей Р- и S-волн (примерно 5,7–6,2 и 3,3–3,6 км/с соответственно) на скоростном разрезе для этих участков (см. рис. 4) [15, 20, 21]. В западной части участка 1 размещаются крупный Ларгинский железорудный узел и золоторудные месторождения [15, 16]. Его восточную часть можно отнести к участкам, потенциально перспективным для поисков золоторудных месторождений. Здесь находятся Хорогочинский низкопродуктивный и Уркиминский среднепродуктивный рудно-россыпные узлы [8].

Участок 2 («центральный блок») (X = 360-470 км). Обширная аномалия пониженных отношений V_n/V_s и σ наиболее ярко проявлена на глубинах 6-11 км в северо-западной и юго-восточной частях участка 2 и на глубине 2–5 км в центральной его части (см. рис. 5). Северо-западная и центральная части участка 2 выделяются в контурах Джелтулакской минерагенической зоны Алдано-Становой провинции (см. рис. 1, б, рис. 6) [15-17]. В структурнотектоническом плане эта зона находится в пределах Верхнезейской равнины в области сочленения Восточно-Становой складчато-блоковой системы и Амуро-Охотской складчатой системы. В самой верхней части разреза находятся низкоскоростные неогенчетвертичные отложения мощностью 1,5-2 км, значения скоростей Р- и S-волн для которых на сейсмическом разрезе (см. рис. 4) составляют 4,2-4,6 и 2,5-2,6 км/с соответственно; вмещающие породы на большой глубине, по аналогии с близлежащими выходами кристаллических пород [15], могут быть представлены архейскими гранодиоритами. Учитывая большую мощность осадков Верхнезейской равнины, северо-западную и центральную части участка 2 можно считать перспективными лишь на больших глубинах. Юго-восточная часть участка 2 выделяется в контурах центральной части Джагдинской рудной зоны Монголо-Охотской минерагенической провинции (см. рис. 1, б, рис. 6) [15–17]. В структурно-тектоническом плане участок находится в центральной части Амуро-Охотской складчатой системы в зоне крупного Джелтулакского разлома глубинного заложения [11, 12, 15–17]. В пределах участка размещается крупный Унья-Бомский золоторудный район (с крупным месторождением Бом [16, 17]). В работе [12] авторы «обосновывают формирование золотокварцевой минерализации узла в раннемеловое время в связи с дифференциацией умеренно кислых магм глубинного очага и двух его промежуточных камер, фиксируемых локальными гравитационными

минимумами в истоках р. Унья и в среднем течении р. Бом. Оруденение формировалось на уровне верхнего выклинивания дайковой фации магматического очага в парагенетической связи с дайками гранитпорфиров и порфиритов под общим мощным сланцевым экраном». Судя по значениям скоростей Ри S-волн 5,4–5,6 км/с и 2,95–3,15 км/с соответственно (см. рис. 4), верхняя часть разреза представлена кислыми породами с высоким содержанием кремнезема, что и определяет здесь приуроченность к ним золоторудных месторождений.

Участок 3 («юго-восточный блок») (X = 618-680 км). Широкая аномалия сейсмических параметров V₀/V₅ и о проявляется с поверхности до глубин 8-10 км, где в северо-западной части она соединяется с зоной существенно пониженных значений V₀/V₅ (1,6−1,7) и σ<0,24 (см. рис. 5). В структурнотектоническом плане данный участок находится в центральной части Буреинского массива Амурской складчатой области в зоне Умлекано-Огоджинского вулканического пояса (см. рис. 3, 4) [15-17]. В минерагеническом плане его северо-западная часть располагается в Моноголо-Охотской минерагенической провинции, юго-восточная – в Ханкай-Буреинской (см. рис. 1, б, рис. 6). Золоторудные (и железистые) месторождения здесь приурочены к кислым породам гранит-гранодиоритового комплекса в составе Умлекано-Огоджинского юрско-мелового вулканического пояса. В непосредственной близости от северо-западной части участка 3 размещаются Огоджинский и Харгинский золоторудно-россыпные узлы низкой и высокой продуктивности соответственно [8]; в юго-восточной его части – крупный Февральский железорудный район Эзопской минерагенической зоны и крупный золоторудный узел (см. рис. 6) [15–17].

Представленное выделение трех крупных блоков, по сути, территориальное. На самом деле правомерна более дробная делимость. Так, согласно прогнозно-минерагенической карте (см. рис. 6) золоторудные месторождения «центрального» блока находятся в контурах Алдано-Становой и Монголо-Охотской минерагенических провинций, а «юго-восточного» — в Монголо-Охотской и Ханкай-Буреинской. Косвенно подобное разделение проявляется и в прослеживаемости аномалий от поверхности к глубинным корням. На центральном участке 2 видно явное разделение глубинных «корней» аномалий: одного – для северо-западной и центральной частей, другого – для юго-восточной (см. рис. 5). Подобное разделение «корней» аномалий вероятно и для «юго-восточного блока», о чем свидетельствуют разделяющие их зоны повышенных отношений скоростей V₀/V_s (1,75–1,8) и σ>0,25 в центральной части участка 3 (см. рис. 5). Необходим детальный анализ этих блоков с акцентом на геохимию и минерагению пород и золотосодержащих оруденений.

Кроме выделенных протяженных участков разреза с аномалиями пониженных отношений V_p/V_s

Геология и минерально-сырьевые ресурсы Сибири – 2022, по. 3 – Geology and mineral resources of Siberia

81

(<1,73) и σ (<0,25), коррелирующих с золоторудными (и железистыми) месторождениями, в створе профиля выделяется ряд мелких участков у поверхности и на небольших глубинах. Для их изучения необходимы более детальные сейсмические данные о верхней части разреза, которые можно получить из материалов ОГТ (по данным преломленных P- и S-волн на удалениях 0–10 км). Опыт автоматизированной обработки таких материалов на профиле 3-ДВ и 1-СБ показал их высокую информативность [6].

На ряде участков Восточно-Станового фрагмента профиля 8-ДВ в верхней части разреза установлены высокие значения V_n/V_s (>1,75-1,80) и о (>0,25-0,26): участки Х = 100-150 км в Тындинском блоке и Х = 490–540 км в зоне Южно-Тукурингрского глубинного разлома (см. рис. 5) [10, 16, 17, 20]. Породы в верхней части коры здесь представлены юрскими и архейскими гранитоидами соответственно [10, 13, 16, 20]. Явную связь этих зон (см. рис. 5) и приуроченности к ним конкретных месторождений проследить не удалось. Скорости продольных и поперечных волн для этих участков составляют 5,6-5,8 км/с и 3,0-3,2 км/с соответственно и могут свидетельствовать об увеличении основности кристаллических пород. Расчеты содержания кремнезема SiO₂ для этих пород по приведенной в работе [1] формуле при средних значениях скоростей Р-(5,7 км/с) и S-волн (3,1 км/с) дают значение около 63 %, что отвечает средним породам. Для ряда выделенных выше участков профиля с пониженными значениями отношения V_p/V_s и σ средние значения содержания кремнезема SiO₂ в породах составляли около 70 %, что отвечает кислым породам.

Выводы

Определены особенности глубинного сейсмического строения верхней коры Селенгино-Становой и Амурской складчатых областей по данным разнополяризованных Р- и S-волн на Восточно-Становом фрагменте опорного 700-километрового геологогеофизического профиля 8-ДВ. Установлено неоднородное строение верхней части земной коры до глубин 15-20 км по значениям скоростей Р-и S-волн, их соотношению и коэффициенту Пуассона. В верхней части земной коры в пределах профиля выделены три протяженных участка с пониженными значениями параметров V_p/V_s (<1,70−1,73) и σ<0,25. Основная часть этих участков на профиле совпадает с известными зонами рудопроявлений - золото-серебряными и железистыми месторождениями в гранитогнейсах, гранитоидах и гранодиоритах. Обоснована связь выделенных поверхностных сейсмических аномалий с глубинными корнями (на глубинах 5-20 км), которые можно считать рудоподводящими и имеющими связь с зонами мезозойской тектоно-магматической коллизии Алдано-Станового, Амурского и Монголо-Охотского мегаблоков.

Полученная новая дополнительная информация о глубинном строении слабо изученной территории Приамурья чрезвычайно полезна для обоснования современной глубинной геофизической модели земной коры и верхней мантии региона и прогноза металлогении.

Работа выполнена при поддержке Минобрнауки России (в рамках государственного задания № 075-00576-21-03) с использованием данных, полученных на УНУ СИЗК МАК (https://ckp-rf.ru/ usu/507436/, http://www.gsras.ru/unu/), а также в соответствии с разделом «Государственная сеть опорных геолого-геофизических профилей, параметрических и сверхглубоких скважин» программы РФ «Воспроизводство и использование природных ресурсов», утвержденной постановлением Правительства РФ от 15.04.2014 г. № 322.

Авторы выражают признательность коллегам из Алтае-Саянского и Сейсмологического филиалов ФИЦ ЕГС РАН, СНИИГГиМС и ВСЕГЕИ за ценные замечания при обсуждении статьи.

СПИСОК ЛИТЕРАТУРЫ

1. Алейников А. Л., Немзоров Н. И., Кашубин С. Н. Способ определения типа горных пород по сейсмическим данным: авт. св. SU 1642416 А1 кл. G 01 V1/30, 15.04.1991.

2. **Геологическая** карта России, увязанная с материалами по странам СНГ. Масштаб 1:2 500 000. 2008 г. / гл. ред. О. В. Петров. – СПб.: ВСЕГЕИ, 2008.

3. **Глубинное** строение земной коры и верхней мантии Северо-Восточной Евразии / С. Н. Кашубин, О. В. Петров, Е. Д. Мильштейн и др. // Региональная геология и металлогения. – 2018. – № 76. – С. 9–21.

4. **Детальные** сейсмические исследования литосферы на Р- и S-волнах / С. В. Крылов, Б. П. Мишенькин, З. Р. Мишенькина и др. – Новосибирск: Наука, 1993. – 199 с.

5. Деформационно-прочностное районирование земной коры Алтае-Саянской складчатой области / В. М. Соловьев, В. С. Селезнев, А. Д. Дучков, А. В. Лисейкин // Проблемы сейсмологии III тысячелетия: матер. междунар. конф. – Новосибирск, 2003. – С. 332–337.

6. **Динамический** пересчет головных волн на центральном участке опорного профиля 3-ДВ: особенности методики и интерпретация временных разрезов / П. О. Полянский, А. Ф. Еманов, А. С. Сальников, В. В. Жабин // Геофизические исследования. – 2018. – Т. 19, № 2. – С. 5–33.

7. **К использованию** поперечных волн на опорных профилях на Востоке России / В. М. Соловьев, В. С. Селезнев, А. С. Сальников и др. // Интерэкспо Гео-Сибирь-2015. Т. 2. – Новосибирск: СГУГиТ, 2015. – С. 243–247.

8. Мельников А. В., Степанов В. А. Анализ продуктивности рудно-россыпных узлов Приамурской золотоносной провинции // Вопросы геологии и комплексного освоения природных ресурсов Восточной Азии: 4-я Всерос. науч. конф. (05–07 октября 2016 г., Благовещенск). Т. 1. – Благовещенск, 2016. – С. 66–69. 9. **Модель** формирования орогенных поясов Центральной и Северо-Восточной Азии / Л. М. Парфенов, Н. А. Берзин, А. И. Ханчук и др. // Тихоокеанская геология. – 2003. – Т. 22, № 6. – С. 7–41.

10. **Особенности** глубинного строения Восточно-Станового фрагмента опорного геолого-геофизического профиля 8-ДВ (по данным ГСЗ) / В. М. Соловьев, А. С. Сальников, В. С. Селезнев и др. // Геология и минерально-сырьевые ресурсы Сибири. – 2020. – № 4. – С. 29–39.

11. Особенности сейсмического строения Забайкалья в створе опорного профиля 1-СБ «Восточный» по данным разнополяризованных Ри S-волн / В. М. Соловьев, Н. А. Галёва, А. С. Сальников и др. // Геология и минерально-сырьевые ресурсы Сибири. – 2019. – № 3 (39). – С. 57–71.

12. Остапенко Н. С., Нерода О. Н. О возрасте, перспективах золоторудной минерализации Унья-Бомского золотоносного узла Приамурья // Отечественная геология. – 2018. – № 4. – С. 63–71.

13. Парфенов Л. М., Кузьмин М. И. Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). – М.: МАИК «Наука/Интерпериодика», 2001. – 571 с.

14. **Пересторонин А. Е.** Рудно-магматические системы золоторудных месторождений Приамурья // Вопросы геологии и комплексного освоения природных ресурсов Восточной Азии: 4-я Всерос. науч. конф. (05–07 октября 2016 г., Благовещенск). Т. 1. – Благовещенск, 2016. – С. 19–22.

15. **Прогнозно-минерагеническая** карта Российской Федерации и ее континентального шельфа масштаба 1:2 500 000 / под ред. О. В. Петрова. – СПб.: ВСЕГЕИ, 2006. – URL: http:// www.vsegei.ru/ru/ info/atlas/prog-min.

16. **Прогнозно-минерагеническая** карта Российской Федерации и ее континентального шельфа масштаба 1:2 500 000 / под ред. О. В. Петрова. – СПб.: ВСЕГЕИ, 2016. – URL: http:// www.vsegei.ru/ru/ info/atlas/prog-min.

17. **Прогнозно-минерагеническая карта** России масштаба 1:2 500 000 как отражение прогнозно-поисковой эффективности региональных геологических исследований / О. В. Петров, А. Ф. Морозов, А. В. Молчанов и др. // Региональная геология и металлогения. – 2017. – № 70. – С. 5–16.

18. **Приамурская** золоторудная провинция / В. А. Степанов, А. В. Мельников, А. С. Вах и др. – Благовещенск: АмГУ, 2008. – 232 с.

19. Смелов А. П., Зедгенизов Л. Н., Тимофеев В. Ф. Алдано-Становой щит // Тектоника, геодинамика и металлогения Республики Саха (Якутия). – М.: Наука, 2001. – С. 81–104.

20. Структура и эволюция земной коры области сочленения Центрально-Азиатского складчатого пояса и Сибирской платформы: профиль Сковородино – Томмот / А. Н. Диденко, А. С. Ефимов, П. А. Нелюбов и др. // Геология и геофизика. – 2013. – Т. 54, № 10. – С. 1583–1599.

21. **Тектоника**, глубинное строение, металлогения области сочленения Центрально-Азиатского и Тихоокеанского поясов: объяснительная записка к тектонической карте масштаба 1:1 500 000 / Л. П. Карсаков, Чжао Чуньзин, М. В. Горошко и др. – Владивосток; Хабаровск: ДВО РАН, 2005. – 264 с.

СПИСОК ЛИТЕРАТУРЫ

1. Aleynikov A.L., Nemzorov N.I., Kashubin S.N. Sposob opredeleniya tipa gornykh porod po seysmicheskim dannym: avt.sv. SU 1642416 A1 kl. G 01 V1/30, 15.04.1991. [Method for determining the type of rocks based on seismic data: auth.cert. SU 1642416 A1 cl. G 01 V1/30, 15th April, 1991]. (In Russ.).

2. Petrov O.V., ch. ed. *Geologicheskaya karta Rossii, uvyazannaya s materialami po stranam SNG. Masshtab 1:2 500 000.* [Geological map of Russia, being contingent with materials on the CIS countries. Scale 1:2,500,000]. Saint Petersburg, VSEGEI Publ., 2008. (In Russ.).

3. Kashubin S.N., Petrov O.P., Milshtein E.D., et al. [Deep structure of the Earth's crust and upper mantle in Northeastern Eurasia]. *Regionalnaya geologiya i metallogeniya* – *Regional Geology and Metallogeny*, 2018, no. 76, pp. 9–21. (In Russ.).

4. Krylov S.V., Mishenkin B.P., Mishenkina Z.R., et al. *Detalnyye seysmicheskiye issledovaniya litosphery na P- i S-volnakh* [Detailed seismic surveys of the lithosphere using P- and S-waves]. Novosibirsk, Nauka Publ., 1993. 199 p. (In Russ.).

5. Solovyev V.M., Seleznev V.S., Duchkov A.D., Liseykin A.V. [Deformation-strength zoning of the Earth's crust of the Altai-Sayan folded region]. *Problemy seysmologii III tysyacheletiya: materialy mezhdunarodnoy konferentsii* [Problems of seismology of the 3rd millennium: Proceedings of the International Conference]. Novosibirsk, 2003, pp. 332–337. (In Russ.).

6. Polyanskiy P.O., Emanov A.F., Salnikov A.S., Zhabin V.V. [Dynamic conversion of head waves on the central part of the 3-DV profile: technique features and interpretation of time sections]. *Geofizicheskiye issledovaniya* – *Geophysical Research*, 2018, vol. 19, no. 2, pp. 5–33. (In Russ.).

7. Solovyev V.M., Seleznev V.S., Salnikov A.S., et al. [To the use of transverse waves on reference profiles in the East of Russia]. *Interekspo Geo-Sibir-2015. Tom 2* [Interexpo Geo-Sibir -2015. Vol. 2]. Novosibirsk, SGUGiT Publ., 2015, pp. 243–247. (In Russ.).

8. Melnikov A.V., Stepanov V.A. [Analysis of productivity of ore-placer clusters of the Amur River goldbearing province]. 4-ya Vserossiyskaya nauchnaya konferentsiya (5–7 oktyabrya 2016, Blagoveshchensk). Sbornik dokladov. Tom 1 [Issues of geology and integrated development of natural resources of East Asia. 4th All-Russian Scientific Conference (5–7 October, 2016, Blagoveshchensk). Vol. 1)]. Blagoveshchensk, 2016, pp. 66–69. (In Russ.).

9. Parfenov L.M., Berzin N.A., Khanchuk A.I., et al. [A model for the formation of orogenic belts in Cen№ 3(51) ♦ 2022 -

tral and Northeast Asia]. *Tikhookeanskaya geologiya* – *Russian Journal of Pacific Geology*, 2003, vol. 22, no. 6, pp. 7–41. (In Russ.).

10. Solovyev V.M., Salnikov A.S., Seleznev V.S., et al. [Depth structure features of the Eastern Stanovoy fragment of the 8-DV geological-geophysical survey – base line (according to the DSS data)]. *Geologiya i mineralno-syryevyye resursy Sibiri* – *Geology and Mineral Resources of Siberia*, 2020, no. 4, pp. 29–39. (In Russ.).

11. Solovyev M.V., Galeva N.A., Salnikov A.S., et al. [Pecularities of the Transbaikal seismic structure at the site of the base line 1-SB Vostochny on data of differently polarized P-and S- waves]. *Geologiya i mineralno-syryevyye resursy Sibiri – Geology and Mineral Resources of Siberia*, 2019, no. 3 (39), pp. 57–71. (In Russ.).

12. Ostapenko N.S., Neroda O.N. [The age, genesis and prospects of gold mineralization of the Unya-Bohm gold zone of the Amur region]. *Otechestvennaya geologiya*, 2018, no. 4, pp. 63–71. (In Russ.).

13. Parfenov L.M., Kuzmin M.I. *Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya)* [Tectonics, geodynamics and metallogeny of the Sakha Respublic (Yakutia)]. Moscow, MAIK Nauka/ Interperiodika Publ., 2001. 571 p. (In Russ.).

14. Perestoronin A.E. [Ore-magmatic systems of gold ore fields of the Amur River region. Issues of geology and integrated development of natural resources of East Asia]. *Chetvertaya Vserossiyskaya nauchnaya konferentsiya* (5–7 *oktyabrya 2016, g.).Sbornik dokladov. Tom 1)* [4th All-Russian Scientific Conference (October 5-7, 2016).Conference proceedings. Vol. 1]. Blagoveshchensk, 2016, pp. 19–22. (In Russ.).

15. Petrov O.V., ed. *Prognozno-mineragenicheskaya karta Rossiyskoy Federatsii i ee kontinentalnogo shelfa masshtaba 1:2 500 000* [Prognostic-minerogenic map of the Russian Federation and its continental shelf on a scale of 1:2,500,000]. Moscow, VSEGEI Publ., 2006. URL: http://www.vsegei.ru/ru/info/atlas/prog-min. (In Russ.).

16. Petrov O.V., ed. *Prognozno-mineragenicheskaya karta Rossiyskoy Federatsii i ee kontinentalnogo shelfa masshtaba 1:2 500 000* [Prognostic-minerogenic map of the Russian Federation and its continental shelf on a scale of 1:2, 500,000]. Moscow, VSEGEI Publ., 2016. URL: http:// www.vsegei.ru/ru/info/atlas/progmin. (In Russ.).

17. Petrov O.V., Morozov A.F., Molchanov A.V., et al. [Prognostic-mineragenic map of Russia of scale 1:2,500,000 as a reflection of the prospecting efficiency of regional geological studies]. *Regionalnaya geologiya i metallogeniya* – *Regional Geology and Metallogeny*, 2017, no. 70, pp. 5–16. (In Russ.).

18. Stepanov V.A., Melnikov A.V., Vakh A.S., et al. *Priamurskaya zolotorudnaya provintsiya* [The Amur River region gold ore province]. Blagoveshchensk, AmSU Publ., 2008. 232 p. (In Russ.).

19. Smelov A.P., Zedgenizov L.N., Timofeev V.F. [Aldan-Stanovoy Shield]. *Tektonika, geodinamika i metallogeniya Respubliki Sakha (Yakutiya)* [Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia)]. Moscow, Nauka Publ., pp. 81–104. (In Russ.).

20. Didenko A.N., Efimov A.S., Nelyubov P.A., et al. [Structure and evolution of the Earth's crust in the region of junction of the Central Asian fold belt and the Siberian Platform: Skovorodino – Tommot profile]. *Russian Geology and Geophysics*, 2013, vol. 54, no. 10, pp. 1236–1249.

21. Karsakov L.P., Zhao Chunzing, Goroshko M.V., et al. *Tektonika, glubinnoye stroeniye, metallogeniya oblasti sochleneniya Tsentralno-Aziatskogo i Tikhookeanskogo poyasov: obyasnitelnaya zapiska k tektonicheskoy karte masshtaba 1:1 500 000* [Tectonics, deep structure, and metallogeny of the junction zone of the Central Asian and Pacific belts. Explanatory note to the tectonic map on a scale 1:1,500,000). Vladivostok, Khabarovsk, FEB RAS Publ., 2005. 264 p. (In Russ.).

> © В. М. Соловьев, А. С. Сальников, В. С. Селезнев, Т. В. Кашубина, Н. А. Галёва, 2022